

КЭР-ХОЛДИНГ

Общество с ограниченной ответственностью «Управляющая компания «Комплексное ЭнергоРазвитие-Холдинг» (ООО «УК «КЭР-Холдинг») 420036, г. Казань, ул. Восход, 45, литер П, офис 415 тел.: +7(843) 572-09-99, тел./факс: +7(843) 572-05-00 e-mail: office@ker-holding.ru; www.ker-holding.ru ОКПО 72651401, ОГРН 1041625404150, ИНН/КПП 1657048240/168150001

Энергия инноваций в движении

Заказчик: ООО «АГК-2»

Завод по термическому обезвреживанию твердых коммунальных отходов мощностью 550 000 тонн ТКО в год

Основные технические решения

027-ПТ1-ПЗ

Изм.	№ док.	Подп.	Дата

2018г.

г. Казань

		J	1						СОДЕРЖАНИЕ					
			C	ОДЕ	.РЖ/	4HNE	Ξ	•••••		•••••	1			
				1.1	Оби	дие с	ведения	я			3			
				1.	.1.1 J	Рекви	ізиты д	цокум	ментов, на основании которых	принято реше	ние о			
						разра	аботке	осно	вных технических решений		3			
				1.	.1.2 K	Сратк	ое опис	зание	е проектных решений		3			
_				1.2	Xap	актер	ристика	і объє	екта	•••••	3			
				1.	.2.1	Cxen	ла план	.иров	очной организации земельного	участка	3			
	abla			1.	.2.2	Техн	юлогич	ески	е решения		10			
	Ц			1.	.2.3	Скла	ід балле	онов	газа	•••••	36			
				1.	.2.4	Сист	гема газ	зосна	бжения	•••••	36			
				1.	.2.5	Элек	стротех	ниче	ская часть		38			
1	寸	\dashv		1.	.2.6	Сети	і связи,	oxpa	аны и слежения		45			
				1.	.2.7	АСУ	′ TΠ			······	45			
\dashv	H	Н	1	1.2.8 Водоподготовительная установка										
	Ц	Ц	4	1.	.2.9	Архі	итектур	ные	решения		49			
				1.	.2.10	Конс	структи	≀ВНЫ€	е и объемно-планировочные реп	шения	52			
ŀ	H	H	1	1.	.2.11	Сист	гемы вс	досн	абжения и водоотведения		59			
				1.	.2.12	Отог	іление,	вен	тиляция и кондиционировани	е воздуха, теп:	ловые			
						сети	•••••				64			
эвано	·			1.	.2.13	Шта	тное ра	спис	ание		69			
Согласовано				1.3	Пер	ечені	ь прило	жени	ий		71			
	寸	\dashv		1.4	Грас	фиче	ская ча	сть			72			
	IHB. №													
	Взам. инв. №													
}		\dashv												
	1	,												
	дата	,	<u> </u>				т		Док. №					
	Подп. и дата	,			<u> </u>				Арх. № 027-ПТ1-ПЗ					
ŀ	Ĭ			Кол.уч абота		№ док. за	. Подп. Йоиу—	Дата 05.2018	Файл: Завод по термическому	Стадия Лист	Листов			
	подл.	H	Прове		Роман	ненко	- Osumpo	05.2018	1 _	OTP 1	72			
	Инв. № подл.	,			Зуйков		pofofo-	05.2018	мощностью 550 000 тонн ТКО в	КЭР				
Ì	Z	, j	Утвег	эдип	Роман	ченко	Charles	05.2018	1 '04	ХОЛДИНГ				

От ООО «УК КЭР-Холдинг»	١.	1.4.1.
Зам. главного инженера	5	М.Н. Омеляшко
ГИП	Charafa	В. И. Романенко
Зам. ГИПа	Money-	И.И. Попова
Производственно-техническая служба		В.П.Якимович
Начальник отдела-Главный специалист	awe	
Главный специалист	Rony	Б.Р.Гольдин
Главный специалист	fleary	Б.Д.Цемехман
Главный специалист	Alstooth	И.М.Бобкова
Отдел тепломеханический	V	
Главный технолог	<i>a</i> 62	М.И. Песецкий
Главный технолог	Suns-	Н.О. Алексеева
Заведующая группой	Fu Ju	Т. В. Зеленко
Главный технолог	96	А.Н. Бурак
Ведущий инженер-проектировщик	ruef	Н.Ф. Шлапак
Архитектурный отдел	n n	
Начальник отдела	The state of the s	Л.Б. Кривоносов
Главный архитектор	d	С.Г. Баранчик
Главный технолог	Has	Т.В. Недвецкая
Главный специалист	A CONTRACTOR OF THE PARTY OF TH	А.В. Касперович
Отдел электротехнический и систем управления		
Начальник отдела	Boly	В.В. Валуй
Главный конструктор	Mint.	А.С. Никишин
Главный конструктор	Jomf	И.В.Токарь
Отдел гидротехники и водоподготовки	,	
Начальник отдела	Vacafu	А.Р.Хасеневич
Главный технолог	Estrafo	Е.В. Тарасевич
Главный технолог	Harfr	Г.Н.Гайдыш
Главный технолог	M	Д.А.Демешко
Строительный отдел		
Начальник отдела	A Duarram	Н.В.Блыскош
Главный конструктор	- Com	В.Б.Чаплыгин
Главный конструктор	D. 0 -	Т.И. Ладутько

Взам. инв. №

Инв. № подл. Подп. и дата

Лист

1.1 Общие сведения

1.1.1 Реквизиты документов, на основании которых принято решение о разработке основных технических решений

Основные технические решения по объекту «Завод по термическому обезвреживанию твердых коммунальных отходов мощностью 550 000 тонн ТКО в год» разработаны на основании исходных данных и требований следующих документов:

- задание на проектирование Завода по термическому обезвреживанию твердых коммунальных отходов мощностью 550 000 тонн ТКО в год;
- «Государственная программа Российской Федерации «Охрана окружающей среды» на 2012-2020 годы» утвержденная постановлением Правительства Российской Федерации от 15 апреля 2014г. №326;

1.1.2 Краткое описание проектных решений

В основных технических решениях (ОТР) предусматривается строительство завода по обезвреживанию твердых коммунальных отходов (ТКО) термическим способом — сжиганием в специальных котлах с системой газоочистки. При использовании этого метода токсичные компоненты подвергаются термическому разложению, окислению и другим химическим превращениям с образованием газов и твердых продуктов (шлак и зола). Уходящие газы подвергаются очистке в много ступенчатой системе газоочистки. Выделяющееся теплота используется для выработки пара в котле с последующей его подачей на паровую турбину для выработки электрической энергии. Принятые решения в целом обеспечивают снижение негативного воздействия отходов на здоровье человека и окружающую среду и достаточно высокую экономическую эффективность применяемой технологии обезвреживания ТКО.

1.2 Характеристика объекта

Взам. инв. №

Подп. и дата

№ подл.

1.2.1 Схема планировочной организации земельного участка

Характеристика района строительства и земельного участка, предоставленного для размещения объекта капитального строительства

Район строительства завода по термическому обезвреживанию твердых коммунальных отходов – Российская Федерация, Республика Татарстан, Зеленодольский муниципальный район, Осиновское сельское поселение, земельный участок с кадастровым номером 16:20:080801:201.

Участок, предоставленный для размещения завода со всех сторон граничит с участком с кадастровым номером 16:20:000000:3561, относящимся к землям сельскохозяйственного назначения.

Площадка строительства проектируемого завода расположена в 1,05 км от поселка Новониколаевский Осиновского сельского поселения, расположенного с

						Док. №
						Арх. № 027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

восточной стороны, и на расстоянии 0.84 км от поселка Краснооктябрьский с северо-восточной стороны участка. С западной стороны участка на расстоянии 1,8 км расположено ОАО «Птицефабрика Казанская», а на расстоянии 1,55 км садоводческое некоммерческое товарищество «Березка». С южной стороны в 0,55 км от площадки строительства расположен склад сжиженного углеводородного газа ПАО «Казаньэнергосинтез». На расстоянии 0,4 км (в наиболее близком месте) с северной стороны участка проходит автомобильная дорога «Автодорога М-7 «Волга» Москва-Владимир-Нижний Новгород-Казань-Уфа».

Участок землеотвода площадью 11,3 га имеет форму параллелограмма со средними габаритами 375х300 м и вытянут с запада на восток. Участок ровный, с уклоном в юго-западном направлении. Перепад отметок составляет 4,58 м: от 127,42 м (северо-восточный угол участка) до 122,84 м (юго-западный угол участка).

Площадка, отведенная под строительство завода по сжиганию ограничена:

- С северной стороны свободной от застройки территорией (пашня);
- С восточной стороны свободной от застройки территорией (пашня);
- С южной стороны свободной от застройки территорией (луг).
- С западной стороны обвалованной территорией полигона складирования птичьего помета.

Ситуационный план размещения объекта представлен на чертеже 027-ПТ1-ГТ1 лист 1.

Данный район по климатическому районированию для строительства в соответствии 131.13330.2012 «Строительная С СП Актуализированная версия СНиП 23-01-99*» относится к подрайону ІВ. Климат района – умеренно-континентальный.

Расчетные температуры наружного воздуха для г. Казань в соответствии с СП 131.13330.2012 «Строительная климатология. Актуализированная версия СНиП 23-01-99*»:

- наиболее холодных суток с обеспеченностью 0,98 минус 41 обеспеченностью 0,92 – минус 33°C;
- наиболее холодной пятидневки обеспеченностью 0,98 минус 33°C, обеспеченностью 0,92 – минус 31°C;
- воздуха средняя температура обеспеченностью 0,94, которая соответствует температуре воздуха наиболее холодного (зимняя периода вентиляционная) – минус 16 °C.

Расчетные температуры наружного воздуха теплого периода года для г. Казань:

- температура обеспеченностью 0,95 0C, воздуха плюс обеспеченностью 0,98 – плюс 28 0С;
- средняя максимальная температура воздуха наиболее теплого месяца 25,1 0C;
- средняя суточная амплитуда температуры наиболее теплого месяца 9,9 0C.

По количеству осадков данный район относится к зоне умеренного увлажнения, их годовое количество, в среднем, составляет 539 мм.

131.13330.2012 По данным «Строительная СП климатология. Актуализированная версия СНиП 23-01-99*» преобладают ветры:

Взам. инв. №

Подп. и		•			й перис й перис		ожный, еверо-западный.	
подл.						ı	Eleva No.	Лист
읟							Док. №	лист
Инв.							Арх. № 027-ПТ1-ПЗ	4
Ž	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	7
ı.								

Обоснование границ санитарно-защитных зон объекта капитального строительства в пределах границ земельного участка

Законом РФ №7-ФЗ от 10.01.2002 г. «Об охране окружающей среды» предусмотрено: «В целях охраны атмосферного воздуха в местах проживания населения устанавливаются СЗЗ организаций. Размер таких зон определяется на основе расчетов рассеивания выбросов загрязняющих веществ в атмосферу, акустических расчетов и в соответствии с санитарной классификацией организаций».

Согласно СанПиН 2.2.1/2.1.1.1200-03 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. Санитарно-эпидемиологические правила и нормативы» (Новая редакция) в целях обеспечения безопасности населения и в соответствии с Федеральным Законом «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999 №52-ФЗ вокруг объектов и производств, являющихся источниками воздействия на среду обитания и здоровье человека, устанавливается специальная территория с особым режимом использования — санитарно-защитная зона (СЗЗ), размер которой обеспечивает уменьшение воздействия загрязнения на атмосферный воздух (химического, физического) до значений, установленными гигиеническими нормативами.

Согласно главе 7.1.12 указанных выше санитарных правил и норм, нормативный размер СЗЗ для мусоросжигательных заводов мощностью от 40 тыс. т/год, должен составлять 1000 метров.

Согласно имеющимся материалам в нормативный размер санитарнозащитной зоны проектируемого завода жилая застройка и садовые участки не попадают. Расчетный размер санитарно-защитной зоны проектируемого завода будет уточнен на стадии разработки проектной документации.

Обоснование планировочной организации земельного участка

Генеральный план завода по сжиганию ТКО разработан на основании задания на проектирование, строительных норм и правил, технологических связей основного и вспомогательного оборудования, направления вывода электрических мощностей с учетом максимального использования территории под застройку, оптимальных связей между зданиями и сооружениями.

Все проектируемые здания и сооружения завода по сжиганию ТКС располагаются в границах выделенного участка.

В соответствии с заданием на проектирование на площадке размещаются здания и сооружения, перечень которых приведен в таблице 1.

Таблица 1 – Перечень проектируемых зданий и сооружений

Взам. инв. №

Подп. и дата

Инв. № подл.

№ по	Наименование зданий и сооружений	Примечание
генпл	• •	
ану		
1	Главный корпус:	
1.1	Зона разгрузки отходов (отвальный пролет)	
1.2	Бункер отходов (приемный)	
1.3	Котельное отделение	
1.4	Отделение очистки дымовых газов	
1.5	Турбинное отделение	

						Док. №	Лист
						 Apx. № 027-ΠT1-Π3	5
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	5

9
,
,
,

1.6	Блок ОЩУ и административно-бытовых помещений	
1.7	Блок электротехнических помещений и ВПУ	
1.8	Отделение шлакоудаления	
1.9	Участок хранения и транспортировки золы	
1.10	Общезаводская компрессорная	
2	Дымовая труба	
3	Газорегуляторный пункт	
4	Воздушная конденсационная установка (ВКУ)	
5	Дизельгенераторы	
6	Открытая установка трансформаторов (пристанционный узел)	
7	Открытое распределительное устройство (ОРУ)	
8	Главная проходная	
9	Стоянка личного автотранспорта	
10	Грузовая проходная с весовой	
11	Стоянка грузовых контейнеров	
12	Насосная станция пожаротушения и хозяйственно-питьевого водоснабжения	
13	Резервуары питьевой воды, 2 шт.	
14	Резервуары противопожарного запаса воды, 2 шт.	
15	Насосная станция бытовых стоков	
16	Комплекс очистных сооружений производственно-дождевых стоков	
17	Бак аварийного слива турбинного масла	
18	Бак аварийного слива трансформаторного масла	
19	Очистные сооружения замасленных сточных вод	
20	Площадка для контейнеров	
21	Склад баллонов газа	
22	Эстакады технологических трубопроводов	
23	Установка обнаружения радиоактивного излучения	
24	Временная стоянка мусоровозов	
25	Ограждение	
26	Кабельная эстакада	
27	Аппараты воздушного охлаждения	
28	Внутриплощадочные автодороги	

Размещение главного корпуса, зданий и сооружений завода продиктовано технологическими требованиями, условиями рельефа местности, точками подключения к внешним сетям и коммуникациям, а также соблюдением санитарных и противопожарных норм.

Главный корпус Г-образной формы расположен в центральной части участка

Взам. инв. №

Подп. и дата

Инв. № подл.

Главный корпус Г-образной формы расположен в центральной части участка. Размещение главного корпуса принято с учетом обеспечения въезда-выезда в зону разгрузки грузового автотранспорта.

В главном корпусе выделены: зона разгрузки отходов, бункер отходов (приемный), котельное отделение, отделение очистки дымовых газов, турбинное

						Док. №	Лист
						 Арх. № 027-ПТ1-П3	6
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	6

отделение, блок ОЩУ и административно-бытовых помещений, блок электротехнических помещений и ВПУ, общезаводская компрессорная, отделение шлакоудаления, участок хранения и транспортировки золы.

С западной стороны от главного корпуса размещены дымовая труба с двумя газоходами, две воздушно-конденсаторные установки с паропроводом из турбинного отделения и два аппарата воздушного охлаждения. Напротив въезда в котельное отделение и отделение очистки дымовых газов размещаются площадка для контейнеров и склад баллонов газа.

К юго-западу от главного корпуса запроектировано размещение газорегуляторного пункта и эстакады технологических трубопроводов (от газорегуляторного пункта до главного корпуса).

С северной стороны главного корпуса (со стороны электротехнических помещений) размещена площадка открытой установки трансформаторов (ОУТ) и дизельгенераторы. Справа от площадки ОУТ размещен бак аварийного слива трансформаторного масла, а слева, между дизельгенераторами и главным корпусом, бак аварийного слива турбинного масла. Напротив площадки ОУТ размещается площадка открытого распределительного устройства (ОРУ). Площадки ОУТ и ОРУ имеют сетчатое ограждение высотой 1,6 м. Справа от ОРУ, в восточном направлении, предусмотрено строительство воздушной линии электропередачи. Слева от ОРУ размещена насосная станция пожаротушения и хозяйственно-питьевого водоснабжения с резервуарами противопожарного и питьевого запаса воды.

Для энергоснабжения вспомогательных зданий и сооружений предусмотрено устройство кабельных эстакад.

Вдоль южной границы территории, на наиболее низком участке площадки строительства, предусматривается устройство комплекса очистных сооружений производственно-дождевых стоков, очистных сооружений замасленных сточных вод и насосной станции бытовых стоков.

К западу от главного корпуса предусматривается территория свободная от застройки для перспективного размещения производства по переработке золы и шлака.

По периметру территории завода вдоль ограды предусмотрена 5-метровая зона свободная от застройки для обеспечения охранных мероприятий.

Ко всем вспомогательным и складским зданиям и сооружениям предусмотрены технологические и пожарные подъезды.

На территорию завода предусмотрено устройство двух въездов, расположенных по восточной границе площадки.

Главная проходная и основной въезд на территорию завода устроены в северной части. Рядом с проходной на территории завода предусмотрена организация стоянки для личного автотранспорта сотрудников.

Второй въезд на территорию предусмотрен в южной части площадки строительства и предназначен для въезда-выезда грузового автотранспорта. На въезде размещаются грузовая проходная с весовой.

Проектом предусмотрено оборудование весовой четырьмя платформами для взвешивания, две из которых предусмотрены для въезжающего автотранспорта и две для выезжающего. Кроме того, предусмотрено устройство двух дополнительных путей объезда (въездного и выездного) для транспорта, не нуждающегося во взвешивании.

Все въезды-выезды оборудуются шлагбаумами и светофорами для регулирования движения грузового автотранспорта. Перед въездом на весовую размещена установка для обнаружения радиоактивного излучения.

Подп. и дата	
Инв. № подл.	

Взам. инв. №

						Док. №
						Арх. № 027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

Лист **7**

'

В соответствии с технологической схемой разгрузки автопоездов (грузовых автомобилей с полуприцепом) перед въездом в зону разгрузки отходов предусмотрено устройство площадки размерами 85,0x22,0 м для временной стоянки мусоровозов, мусорных контейнеров и прицепов с возможностью маневрирования автопоездов для погрузки и разгрузки этих контейнеров.

Во избежание беспорядочного пересечения путей проезда грузового и технологического автотранспорта, запроектировано кольцевое движение перед грузовой проходной.

Проектируемые здания и сооружения размещены с учетом требований Федерального закона «Технический регламент о требованиях пожарной безопасности № 123-ФЗ» по противопожарным расстояниям между зданиями, сооружениями и строениями в зависимости от степени огнестойкости и класса конструктивной пожарной опасности.

Схема планировочной организации земельного участка представлена на чертеже 027-ПТ1-ГТ1 лист 2.

Технико-экономические показатели

Основные технико-экономические показатели планировочной организации земельного участка показывают эффективность его использования и приведены в таблице 2.

Таблица 2 - Технико-экономические показатели земельного участка

Nº ⊓/⊓	Наименование	Территория в ограждении	Предзаводская территория		
1	Общая площадь земельного участка, кадастровый номер 16:20:080801:201, га	11,3			
2	Площадь земельного участка, га	10,33	0,97		
3	Площадь застройки общая, м²	48630	-		
	- в т. ч. площадь перспективной застройки*	(21600)	-		
4	Коэффициент застройки, %	47	-		
5	Площадь автодорог, проездов и площадок, м²	16380	2685		
6	Площадь тротуаров и площадок, м ²	2390	425		
7	Площадь озеленения (посев трав), м ²	35900	6590		
* пло	ощадь территории для перспективного разме	цения производст	ва по		

Зонирование территории земельного участка

переработке золы и шлака

Взам. инв. №

Подп. и дата

Ì							Док. №	Лист
							Арх. № 027-ПТ1-ПЗ	Ω
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	0

Лист

Компоновочное решение генерального плана площадки завода обеспечивает четкое функциональное зонирование территории, а также рациональность транспортных и технологических связей.

В соответствии с действующими нормативными документами при планировке объекта выделяются следующие планировочные зоны:

- входная;
- производственная;
- подсобная;
- складская.

Зонирование территории завода по термическому обезвреживанию твердых коммунальных отходов определено функциональным назначением зданий и сооружений.

Входная зона располагается в восточной части участка в районе основного и грузового въезда на территорию завода. В состав входной зоны входят: главная проходная, стоянка личного автотранспорта, грузовая проходная с весовой, предзаводская территория.

Производственная зона располагается в центральной части площадки и включает в себя следующие здания и сооружения: главный корпус, дымовая труба с газоходами, воздушная конденсаторная установка с паропроводом и аппаратами воздушного охлаждения, открытая установка трансформаторов с дизельгенераторами и площадка ОРУ.

Здания подсобного назначения размещаются в северной и южной частях территории. К ним относятся: газорегуляторный пункт, насосная станция пожаротушения и хозяйственно-питьевого водоснабжения и очистные сооружения.

Склад баллонов газа размещен в западной части площадки.

Обоснование схем транспортных коммуникаций

Обслуживание промышленной площадки завода предусмотрено автомобильным транспортом.

На территорию завода предусмотрено устройство двух автомобильных въездов – главный (с проходной для прохода персонала и стоянкой личного автотранспорта) и грузовой (для доставки мусора и вывоза золы и шлака).

Вокруг главного корпуса запроектирована кольцевая автомобильная дорога, вдоль которой размещены вспомогательные, складские здания и сооружения, сооружения обслуживающего назначения, что обеспечивает рациональную взаимосвязь между объектами, возможность ремонта, доставки и вывоза оборудования, подъезда технологического транспорта и пожарной техники, минимальную протяженность внутриплощадочных автодорог.

Поперечный профиль автомобильных дорог принят городского типа с установкой бортового камня.

Ширина внутриплощадочных автодорог по основным направлениям движения мусоровозов и транспорта по вывозу шлака принята 8,0 м. Ширина остальных внутриплощадочных автодорог при двухполосном движении составляет 7,0 м, при однополосном движении 4,5 м. Радиусы по оси проезжей части основных внутриплощадочных автодорог приняты с учетом габаритов транспортных средств и составляют не менее 15 м. Перед въездом в отделение шлакоудаления организована площадка для манёвра грузового транспорта по вывозу металлолома и транспорта подъезжающего к участку хранения и транспортировки золы. С западной стороны отделения шлакоудаления предусмотрена площадка для

L						
						Док. № Арх. № 027-ПТ1-ПЗ
	Изм.	Кол.уч	Лист	№ док.	Подп.	Файл:

Подп. и дата

ів. № подл. П

манёвров автопогрузчиков и грузовых автомашин для перевозки крупногабаритных инертных материалов.

Возвышение низа пролетных строений технологических эстакад в местах их пересечения с автобильными дорогами составляет не менее 5,0 м.

Между грузовой проходной и зоной разгрузки отходов в соответствии с технологической схемой разгрузки автопоездов (грузовых автомобилей с полуприцепом) предусмотрена площадка 85,0x22,0 для мусорных контейнеров и прицепов с возможностью маневрирования автопоездов для погрузки и разгрузки этих контейнеров. Здесь же располагается накопительная площадка для временной стоянки мусоровозов. Наличие данной площадки позволит сгладить неравномерность доставки мусора во времени.

Во избежание беспорядочного пересечения путей проезда грузового автотранспорта, запроектировано кольцевое движение перед грузовой проходной.

Строительство внеплощадочной подъездной автомобильной дороги к территории завода предполагается по отдельному проекту. Согласно маршруту доставки ТКО движение автотранспорта предусматривается со стороны дороги «Автодорога М-7 «Волга» Москва-Владимир-Нижний Новгород-Казань-Уфа» по существующим автомобильным дорогам Осиновского сельского поселения со строительством недостающего участка. Схему проезда см. на чертеже 027-ПТ1-ГТ1 лист 1.

1.2.2 Технологические решения

Твердые коммунальные отходы (ТКО) — отходы, образующиеся в жилых помещениях в процессе потребления физическими лицами, а также товары, утратившие свои потребительские свойства в процессе их использования физическими лицами в жилых помещениях в целях удовлетворения личных и бытовых нужд. К ТКО также относятся отходы, образующиеся в процессе деятельности юридических лиц, индивидуальных предпринимателей и подобные по составу отходам, образующимся в жилых помещениях в процессе потребления физическими лицами.

Обезвреживание отходов – уменьшение массы отходов, изменение их состава, физических и химических свойств (включая сжигание и (или) обеззараживание на специализированных установках) в целях снижения негативного воздействия отходов на здоровье человека и окружающую среду.

К одному из методов обезвреживания отходов, содержащих в своем составе органические вещества, является высокотемпературный окислительный метод (сжигание). Его сущность заключается в сжигании горючих отходов. При использовании этого метода токсичные компоненты подвергаются термическому разложению, окислению и другим химическим превращениям с образованием газов и твердых продуктов (шлак и зола). Уходящие газы подвергаются очистке в много ступенчатой системе газоочистки.

Настоящим проектом предусматривается строительство завода по обезвреживанию ТКО термическим способом — сжиганием в специальных котлах с системой газоочистки. Выделяющееся теплота используется для выработки пара в котле с последующей его подачей на паровую турбину для выработки электрической энергии. Принятые решения в целом обеспечивают снижение негативного воздействия отходов на здоровье человека и окружающую среду и

L								
							Док. №	Лист
							Арх. № 027-ПТ1-ПЗ	10
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	10

нв. № подл.

достаточно высокую экономическую эффективность применяемой технологии обезвреживания ТКО.

Мощность и режим работы завода

Завод предназначен для термического обезвреживания твердых коммунальных отходов с выработкой электрической энергии.

Проектная мощность завода по обезвреживаемым ТКО – 550 000 т/год.

Установленная электрическая мощность – 55 МВт.

Число часов работы котлов в год составляет 7725 часов (550000 т : 71,2 т/ч).

В соответствии с данными HZI (П-3363 Казань 550 HZI/AГК-2/00054) плановая остановка каждой линии котельных установок составляет четыре недели. Число часов одного котла в ремонте составляет 672 часа в год.

Число часов работы паротурбинной установки - 8395 часов.

Число часов работы ПТУ с номинальной мощностью 7051 час, в режиме разгрузки 1344 часа. Число часов использования установленной мощности ПТУ составляет 7670 часов. Коэффициент использования установленной мощности ПТУ 91,4% (без учета вывода паровой турбины в ремонт).

Коэффициент использования установленной электрической мощности в соответствии с заданием на проектирование — 85%, исходя из этого турбоагрегат можно выводить из работы на техническое обслуживание на 25 дней.

Во время технического обслуживания паротурбинной установки предусматривается режим работы котлов со сбросом острого пара через БРОУ в воздушную конденсационную установку.

Выработка тепловой энергии (сетевой воды на отопление, вентиляцию и горячее водоснабжение) предусматривается только для собственных нужд Завода. Покрытие тепловой нагрузки собственных нужд осуществляется с максимальным использованием низкопотенциального пара из нерегулируемого отбора паровой турбины.

Устанавливается следующее основное оборудование:

- два котла, предназначенные для термического обезвреживания ТКО;
- одна паровая турбина конденсационного типа с аксиальным выхлопом пара, с электрическим генератором номинальной электрической мощностью 55 МВт с воздушной конденсационной установкой.

Технологический процесс термического обезвреживания ТКО отображен на структурной схеме завода лист 027-ПТ1-ТМ1 л.1.

Доставка ТКО осуществляется 8 часов в сутки следующим автомобильным грузовыми автомобилями с полуприцепом объёмом транспортом: мусоровозами ZOELLER MEDIUM; мусоровозами FAUN POWER бункеровозами MARELL (мультилифт). Отходы выгружаются в приемный бункер, расположенный в отвальном пролете и имеющий объём, вмещающий 12-ти суточный запас ТКО. Крупногабаритные отходы проходят стадию дробления в шредере. Далее из приемного бункера отходы с помощью грейферного крана подаются в расходные бункеры котлов. Из расходного бункера посредством гидравлических поршневых питателей ТКО направляются на сжигание на колосниковую решетку, которая состоит из дорожек с воздушным охлаждением. Для каждой колосниковой дорожки предусмотрен отдельный гидравлический поршневой питатель. Просев колосниковой решетки падает в воронки и посредством желобов конвейеры-увлажнители, направляется на цепные расположенные ниже. Цепной конвейер транспортирует просев колосниковой решетки к разгружателю шлака.

L								
							Док. №	Лист
							Арх. № 027-ПТ1-П3	11
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	11

Подп. и дата

№ подл.

В нижнем конце колосниковой решетки шлак падает через желоб в воду разгружателя шлака и охлаждается. При помощи гидравлического поршня шлак разгружателя перемещается на вибрационный и ленточный конвейер. Для всех гидравлических приводов предусмотрена единая гидравлическая станция.

Стабильное горение ТКО происходит при температуре 850 – 1260° C.

Образующиеся продукты сгорания с температурой порядка 900° С поступают в котел, где происходит утилизация теплоты со снижением температуры газов до ~130 $^{\circ}$ C.

Полученный острый пар с параметрами 7 МПа и температурой 430 ^оС поступает в паровую турбину, электрической мощностью 55 МВт.

Покрытие тепловых нагрузок для процесса сжигания (воздухоподогреватели, подогреватели конденсата) обеспечивается за счет пара отбора турбины.

Покрытие нагрузок на отопление и вентиляцию обеспечивается за счет пара нерегулируемого отбора турбины в рабочем режиме завода и электрокотлами в период остановки основного оборудования.

Дымовые газы поступают в систему сухой очистки. Очистка производится в три этапа:

- первый этап происходит непосредственно в котле. Очистка от оксидов азота происходит в радиационной зоне с применением впрыска 33% водного раствора карбамида;
- второй этап в реакторе, где происходит очистка от вторичных диоксинов, органических веществ, тяжелых металлов и кислотных составляющих. Для очистки применяется активированный уголь и гашеная известь. Реактор с идеальным режимом вытеснения со статичными смешивающими пластинами обеспечивает хорошую передачу массы и реакции между газообразными и твердыми частицами. Свежие присадки при помощи пневматики подаются через одну центральную форсунку на участок нисходящего потока, в то время как рециркулирумые твердые частицы подаются на второй участок восходящего потока. Свежие добавки имеют среднее время пребывания в зоне реакции около 2 секунд. Присадки подаются из соответствующего бункера в систему очистки дымовых газов;
- третий этап в рукавном фильтре, здесь происходит очистка дымовых газов от золы, пыли и продуктов газоочистки.

Твердые вещества удаляются из бункеров фильтров при помощи двух цепных конвейеров, расположенных в нижней части бункеров и транспортируются на общем цепном конвейере к двум накопительным бункерам. Из одного накопительного бункера твердые вещества попадают обратно в реактор. Из другого накопительного бункера остаточные отходы транспортируются при помощи пневматического транспортирующего устройства в силос золы.

После очистки дымовые газы дымососом отводятся в дымовую трубу Ø 2000 мм.

Дымовой газ, отбираемый **после** оборудования сепарации пыли, рукавного фильтра и дымососа, подается обратно в камеру горения. В процессе рециркуляции дымового газа снижается содержание свежего воздуха в газе, который подается на уровне вдувания вторичного воздуха. Это позволяет поддерживать процесс сжигания с меньшими излишками воздуха без увеличения температуры в камере сжигания или концентрации СО. Рециркуляция дымовых газов приводит к эффективному смешиванию дымовых газов и повышает эффективность работы котла. При использовании рециркуляции дымовых газов содержание NOx в неочищенном газе существенно снижается.

Характеристика ТКО и вспомогательного топлива

						Док. №	Лист
				·		 Арх. № 027-ПТ1-П3	12
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	12

Инв. № подл. Подп. и

Утилизируемые твердые коммунальные отходы поступают из города Казани и ближайших городских округов.

Максимальная удельная теплота сгорания ТКО на рабочую массу 9100 кДж/кг, зольность 28,58%, влажность — 24,67%. Минимальная удельная теплота сгорания ТКО на рабочую массу 7200 кДж/кг, зольность 31,67%, влажность — 30,11%.

Расчетный часовой расход ТКО на один котел составляет 35,6 т/ч.

В режимах пуска и останова котла, в случаи понижении теплоты сгорания ТКО ниже 6000 кДж/кг непрерывно работают вспомогательные горелки.

При теплоте сгорания ТКО ниже 6400 кДж/кг вспомогательные горелки работают короткий интервал времени. Работа горелок поддерживает температуру в топках парогенераторов выше минимально допустимой (850°C) и обеспечивает стабильный режим горения ТКО.

Вспомогательное топливо – природный газ.

Максимальный часовой расход вспомогательного топлива на два котла составляет 10000 нм³/ч в рабочем режиме. В пусковом режиме расход природного газа на два котла 60479 нм³ (для 1 пуска в течении 6 часов).

Характеристика природного газа представлена в таблице 3.

Таблица 3

Наименование	Теплота сгорания низшая при 20°С и 101.3 кПа, не менее, МДж/м³ (ккал/м³)	1013 иПа на мана	
Природный газ	34,24 (8179,0)	0,6977	

Техническая характеристика основного тепломеханического оборудования

На заводе по термическому обезвреживанию твердых коммунальных отходов предусматривается установка следующего основного оборудования:

- двух паровых котлов паропроизводительностью 113,0 т/ч каждый с температурой острого пара 430 °C, давлением 7,0 МПа;
- конденсационной паровой турбины с генератором электрической мощностью 55,0 MBт;
 - воздушной конденсационной установки.

Котел паровой

Котлы паровые предназначены для термического обезвреживания ТКО. Каждый котел состоит из загрузочного бункера, поршневого питателя, камеры сгорания с колосниковой решеткой, конвективных и радиационных проходов, барабана, испарительных поверхностей и пароперегревателя.

						Док. №	Лист
						Арх. № 027-ПТ1-ПЗ	13
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	13

нв. № подл. По

Таблица 4

№ п/п	Наименования	Значения
1	Диапазон регулирования нагрузки, %	70-100
2	Температура окружающей среды, ^о С	5 - 45
3	Номинальная температура пара, ⁰ С	430
4	Номинальная паропроизводительность, т/ч	113
5	Номинальное давление на выходе из котла, МПа	7,0
6	Номинальная температура питательной воды, ^о С	120
7	Объем перерабатываемых отходов, кг/ч	35 600

Краткое описание конструкции

Конструкция котла разработана в соответствии с базовым инжинирингом фирмы Hitachi Zosen INOVA. Конструкция котла предусматривает долгий срок службы, максимальную эффективность и продолжительные периоды эксплуатации.

Паровой котел состоит из пяти проходов:

- 1 верикальный пустой проход;
- 2 вертикальный радиационный проход;
- 3 вертикальный радиационный проход;
- 4 горизонтальный конвективный проход;
- 5 вертикальный конвективный проход.

Котел разработан с наилучшей тепловой эффективностью и минимальными потерями тепла. Температура дымовых газов на выходе контролируется путем регулировки температуры питательной воды, подаваемой на экономайзер (ЕСО). Многоступенчатый подогреватель позволяет добиться оптимальной регулировки температуры пара согласно диаграмме горения. Подогрев первичного воздуха на горение осуществляется при помощи пара:

от коллектора пара низкого давления (питание коллектора осуществляется из отбора пара №2 паровой турбины);

от отбора пара №1 паровой турбины;

насыщенного пара из барабана котла.

Подогрев вторичного воздуха для горения осуществляется от коллектора пара низкого давления. Конденсат пара от подогревателей первичного воздуха и вторичного воздуха направляется в деаэратор.

Пароводяной тракт котла.

Котел преобразует тепло дымовых газов в перегретый пар. Он спроектирован, как котел с естественной циркуляцией и разделен на 5 главных подсистем:

- система экономайзера;
- система испарителя;
- система перегревателя;

						Док. №	Лист
						Арх. № 027-ПТ1-ПЗ	11
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	14

1нв. № подл.

В системе экономайзера вода, поступающая из деаэратора, подогревается до температуры, близкой к температуре кипения. Это осуществляется посредством конвекции с использованием трубных пучков.

После выхода из системы экономайзера, вода испаряется в системе испарителя. Это осуществляется посредством конвекции с использованием трубных пучков и посредством излучения с использованием мембранных стенок.

Барабан котла соединяет систему экономайзера и испарителя. Нижняя половина барабана заполнена водой, а верхняя половина - насыщенным паром. Котел спроектирован таким образом, чтобы граница между обеими фазами (жидкость / газ) находилась в середине барабана.

После выхода из системы испарителя насыщенный пар перегревается с использованием трубных пучков для достижения необходимой температуры пара. Эта температура контролируется посредством впрыска воды между трубными пучками.

Непрерывная продувка ограничивает количество растворенных солей в воде котла, что минимизирует риск коррозии внутренней части трубок котла, т.е. на стороне воды-пара.

Котел оснащается необходимыми импульсно-предохранительными устройствами, регулирующими клапанами, запорной арматурой и арматурой дренажей и воздушников.

Конструкция предохранительных клапанов предусматривает возможность дистанционного управления этими клапанами.

Котел снабжен необходимыми устройствами для отбора проб пара и воды, а также контрольно-измерительными приборами. Процессы питания котла, регулирования температуры перегрева пара и горения автоматизированы. Предусмотрены средства тепловой защиты технологических процессов котла.

Сжигание топлива в котле

Загрузочный бункер соединяет бункер ТКО с камерой сжигания. Он обеспечивает непрерывную подачу отходов на колосник, и его конструкция предотвращает образование дугообразных отложений (подвисаний) материала.

Загрузочный бункер состоит из приемной воронки, затвора воронки, загрузочного лотка и опорной рамы.

Створчатые затворы приемной воронки установлены в нижней части бункера, по одному для каждой дорожки колосника; они герметично отсекают камеру сжигания от бункера ТБО. Приводные цилиндры работают от гидравлической станции.

С целью контроля высоты штабеля отходов, над загрузочным лотком установлен не требующий обслуживания датчик уровня.

Загрузочный бункер обеспечивает следующие функции:

- во время пуска котла, при работе вспомогательных горелок, отходы не поступают на колосник до тех пор, пока не будет достигнута минимальная температура камеры сжигания, требуемая для подачи отходов;
- во время сжигания штабель отходов в лотке загрузочного бункера минимизирует подсос воздуха в камеру сжигания;
- во время остановка котла предотвращается обратный поток дымовых газов в бункер ТКО, даже при низком уровне отходов в лотке загрузочного бункера.

l								
							Док. №	Лист
							Арх. № 027-ПТ1-П3	15
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	15

Подп. и дата

Инв. № подл. По

Охлаждающий контур представляет собой систему с открытым водяным контуром и водяным баком. Водяной бак заполнен технической водой. Уровень воды в баке контролируется открытием и закрытием подпиточного клапана. Система охлаждения загрузочного бункера представлена на схеме технической воды 027-ПТ1-ТМ1 лист 5.

Из загрузочного бункера отходы попадают на горизонтальный подающий стол, по которому перемещаются поршневые питатели (по одному на каждую дорожку колосника). По мере перемещения поршневых питателей вперед и назад отходы проталкиваются на колосник. Колосник сжигает отходы, обеспечивает непрерывное горение и хорошее выгорание шлака. Это наклонный колосник с углом наклона 18° и загрузкой поступательным движением. Размер колосника выбран на основании схемы горения (определяемой пропускной способностью установки и теплотворной способностью отходов).

Сжигание регулируется системой управления горения (CCS), разработанной компанией HZI. Настоящая система CCS компании HZI позволяет осуществлять полностью автоматическую и безопасную работу с требуемой уставкой по расходу острого пара. Даже при меняющемся качестве отходов обеспечивается соблюдение утвержденных эксплуатационных характеристик, таких как температура в камере сжигания, выгорание зольного остатка и содержание О2 в дымовых газах. Благодаря применению системы управления, обеспечивается возможность достижения стабильных условий сжигания и оптимальная работа оборудования, а также предотвращается повышенное загрязнение камеры сжигания.

Гидравлическая станция.

Для затвора загрузочного бункера, поршневого питателя, колосника, шиберной заслонки желоба для зольного остатка и устройства удаления зольного остатка поршневого типа предусмотрена установка комбинированной гидравлической станции, включающей в себя насосное оборудование.

Гидравлическое масло подается гидравлическим насосом (с контурами резервирующими все функциональные группы, с системой управления расходом в зависимости от давления). Каждая система имеет отдельный гидравлический блок управления с электрическими элементами управления для осуществления функций затвора загрузочного поршневого питателя, колосника и шиберной заслонки желоба для зольного остатка. Каждый элемент колосника имеет отдельный блок управления. Насосы устанавливаются на гидравлическом резервуаре. Каждый блок управления монтируется в непосредственной близости от соответствующей системы. Устройство удаления зольного остатка поршневого типа оснащено отдельным регулируемой скоростью отдельным блоком С И управления. дополнительном Воздухоохлаждаемый теплообменник устанавливается гидравлическом контуре для охлаждения горячего гидравлического масла.

Системы парового котла.

Система первичного и вторичного воздуха для горения.

Система первичного воздуха регулирует и подает основной воздух горения к колоснику. Основной воздух забирается в зоне бункера ТКО и подается

						Док. №
						Арх. № 027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

Лист

№ подл.

Система вторичного воздуха подает и регулирует поток вторичного воздуха горения для сжигания и смешивания с дымовыми газами. Некоторые летучие компоненты отходов не сгорают непосредственного на колоснике, а выпускаются и подвергаются высокотемпературному воздействию и сгорают, проходя чрез камеру сжигания. Вторичный воздух подается, как часть общего воздушного потока, необходимого для полного сжигания. Тангенциальная подача вторичного воздуха формирует закрученный поток в камере сжигания, что приводит к хорошему смешиванию газа горения и равномерному распределению в направлении основного потока.

Система рециркуляции дымовых газов.

Дымовой газ, отбираемый до оборудования сепарации пыли, рукавного фильтра и дымососа, подается обратно в камеру горения. В процессе рециркуляции дымового газа снижается содержание свежего воздуха в газе, который подается на уровне вдувания вторичного воздуха. Это позволяет поддерживать процесс сжигания с меньшими излишками воздуха без увеличения температуры в камере сжигания или концентрации СО. Рециркуляция дымовых газов приводит к эффективному смешиванию дымовых газов и повышает эффективность работы котла. При использовании рециркуляции дымовых газов содержание NOx в неочищенном газе существенно снижается.

Теплообменник дымовых газов.

Тепло дымовых газов после системы очистки дымовых газов и дымососа рекуперируется и используется для подогрева конденсата, чтобы оптимизировать общую энергоэффективность цикла.

Дымосос.

Дымосос создает необходимое разряжение в камере сжигания и проводит дымовой газ из печи через систему очистки дымового газа к дымовой трубе. Скорость вращения дымососа регулируется контроллером давления камеры сжигания.

Газоходы и дымовая труба.

Каждый котел посредством газоходов подключаются к металлической дымовой трубе устанавливаемой вне главного корпуса. На газоходах на подводе к дымовой трубе предусмотрены шумоглушители. Газы проходят систему очистки и через дымовую трубу дымососами выбрасываются в атмосферу.

Отдельностоящая дымовая труба, выполненная в виде двух стеклопластиковых труб Ø 2000 мм, заключенных в единую железобетонную оболочку. Трубы оснащены системой контроля и мониторинга уходящих газов (CEMS) в базовом проекте HZI. Для подъема людей на дымовую трубу внутри предусматриваются вертикальные стремянки с переходами на промежуточных площадках.

Вспомогательная горелка (природный газ).

Вспомогательная горелка служит для следующих процессов:

					<u> </u>		
						Док. №	Лист
						Арх. № 027-ПТ1-П3	17
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	17

Инв. № подл.

- пуска системы сжигания ТКО;
- восстановления горения;
- остановки системы сжигания.

Пуск системы сжигания.

Вспомогательная горелка подогревает камеру сжигания до установленной минимальной температуры перед началом загрузки отходов. Когда открываются затворы загрузочного бункера, отходы попадают на колосниковую решетку, где они сразу же начинают гореть.

Восстановление горения.

Горение снова активируется, если в процессе сжигания отходов температура дымовых газов снижается ниже минимального установленного значения.

Остановка системы сжигания.

При остановке системы, горелка поддерживает минимальную температуру в камере сжигания до тех пор, пока не будут сожжены все отходы на колоснике. Когда колосник станет пустым, температура в камере дожигания снижается регулируемым образом.

Система очистки радиационных поверхностей котла.

Система очистки поверхностей котла включает:

- очистку струей воды;
- пневматическую систему простукивания;
- устройство сдува сажи.

Очистка струей воды установлена во 2-м и 3-м проходах котла и обеспечивает автоматическую очистку поверхностей нагрева. Метод очистки заключается в мгновенном испарении воды на поверхности частиц золы.

Пневматическая система простукивания установлена на горизонтальном конвективном проходе котла с обеих сторон. Цилиндры с пневматическим приводом ударяют по нижним коллекторам связок. Ударное воздействие передается толкателями на коллекторы и оттуда далее к трубам. Из-за ударного воздействия, частицы осажденной на трубах золы падают в бункеры и удаляются системой транспортировки зольного остатка.

Устройство сдува сажи расположено в вертикальном 5-м проходе котла и состоит из продувочных труб и установленными на их конце соплами. Они перемещаются в осевом направлении мимо нагревательных поверхностей, которые необходимо очищать. В качестве очищающей среды используется острый пар. Исходное положение винтовых обдувателей фурменного типа находится за пределами потока дымовых газов.

Система удаления шлака (грубого зольного остатка).

В котельном отделении предусматривается система шлакоудаления. Шлак ссыпается из воронок под колосниками в конвейер грубого зольного остатка, состоящего из двух секций. Проходя через конвейер и соединяясь со шлаком, выпадающим после колосников, шлак попадает в систему мокрых шлаковых ванн со скребком. Данная система не допускает подсос воздуха в камеру сжигания через колосник. Колосниковые блоки конструкции Hitachi Zosen Inova AG минимизируют объем грубого остатка на колоснике. Под каждым элементом колосника и под каждым поршневым питателем имеется бункер грубого остатка с заслонкой для сбора и сброса колосникового грубого зольного остатка. Желоба погружены под уровень воды внутри конвейера, что позволяет исключить подсос воздуха. Мокрый

l								
							Док. №	Лист
							 Арх. № 027-ПТ1-П3	18
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	10

Подп. и дата

з. № подл.

цепной конвейер охлаждает грубый остаток с колосника и транспортирует его в устройство удаления зольного остатка.

Центральный ленточный конвейер расположен вдоль оси 4 и пролегает от ряда E до здания пересыпки и накопления шлака.

Желоб зольного остатка и устройство удаления зольного остатка имеют между собой воздухонепроницаемое соединение для обеспечения изоляции от камеры сжигания. Контур управления уровнем поддерживает постоянный уровень воды в устройстве удаления зольного остатка поршневого типа. Слив воды из устройства удаления зольного остатка может осуществляться в бак отработанной воды. Водяной пар, который образуется при испарении в процессе сброса зольного остатка, поднимается в камеру сжигания по желобу зольного остатка. Водяной пар, образующийся в зоне сброса зольного остатка, отбирается посредством вентилятора пара и подается в систему вспомогательного воздуха.

Главный шлаковый конвейер состоит из двух «ниток» ленточных роликовых конвейеров.

Устройства отбора проб

Котел оснащен несколькими устройствами отбора и охлаждения проб. Все элементы пробоотборных устройств, которые контактируют с пробами воды или пара, выполняются из нержавеющей стали.

Данные по ресурсу работы парового котла и показателям надежности.

Расчетный ресурс, работающих под давлением элементов ПК с расчетной температурой, соответствующей области ползучести, должен быть не менее:

- 100000 часов для труб поверхностей нагрева и выходных коллекторов пароперегревателей высокого давления, работающих с температурой, соответствующей области ползучести;
 - 200000 часов для остальных элементов.
 - Полный назначенный срок службы парового котла не менее 25 лет.
- Допустимое расчетное число пусков за срок службы 1600, в том числе из холодного состояния 300.
 - Показатель готовности на уровне 8500 ч. в год.
- Все элементы котла предназначены для минимального срока службы 12000 часов работы между плановыми процедурами техобслуживания.

Турбина паровая конденсационного типа

Турбина паровая конденсационного типа с аксиальным выхлопом, с электрическим генератором номинальной электрической мощностью 55 МВт с воздушной конденсационной установкой (ВКУ).

Основные характеристики представлены в таблице 5.

Таблица 5

Взам. инв. №

Подп. и дата

№ п/п	Наименования	
1	Электрическая мощность, МВт	55

						Док. №	Лист
						 Apx. № 027-ΠT1-Π3	19
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	19

2	Параметры свежего пара:		<u> </u>
	давление, МПа (кгс/см²)	6,8(68,0)	
	температура, ^о С	428	
	расход, т/ч	226	
3	Параметры в камере отбора на собственные нужды:		
	давление, МПа (кгс/см²) (отбор №1)	0,90(9,0)	
	температура, ^о С	190	
	расход, т/ч	4,39	
4	Параметры в камере отбора на собственные нужды:		
	давление, МПа (кгс/см²) (отбор №2)	0,33(3,3)	
	температура, ^о С	137	
	расход, т/ч	35,1	
5	Параметры в отборе пара на деаэратор:		
	давление, МПа, (кгс/см²)	0,33 (3,3)	
	температура, ^о С	137	
	расход, т/ч	11,93	
6	Параметры в отборе пара на ПНД: давление, МПа, (кгс/см²)	0,06(0,6)	
	температура, ^о С	86	
	расход, т/ч	13,2	
8	Давление в конденсаторе, кПа (кгс/см²)	8,5(0,085)	
9	Температура пара в конденсаторе, ⁰ С	42	

Краткое описание

Взам. инв. №

Подп. и дата

№ подл.

Турбина представляет собой одновальный одноцилиндровый агрегат с аксиальным выхлопом. Конструкция и материал дисков и лопаточного аппарата, работающих в зоне фазового перехода, обеспечивают их коррозионную стойкость в процессе длительной эксплуатации.

Турбина имеет дроссельное парораспределение. Свежий пар подается к блоку стопорно-регулирующих клапанов, в котором размещены стопорный клапан с автозатвором и два регулирующих клапана со своими сервомоторами. От блока клапанов пар по перепускным трубам поступает во внутренний корпус цилиндра турбины.

Из выхлопного патрубка турбины пар поступает в конденсатор с воздушным охлаждением. Патрубок турбины имеет фланец для присоединения трубопровода большого диаметра к ВКУ.

Фикспункт турбины расположен на оси турбины и определен пересечением осей поперечных и продольных шпонок, расположенных на задней фундаментной раме выхлопного патрубка турбины.

Конструкция турбины обеспечивает свободу теплового расширения корпуса цилиндра при всех режимах эксплуатации. Тепловое расширение турбины от фикспункта происходит в сторону переднего подшипника.

						Док. №	Лист
						 Арх. № 027-ПТ1-П3	20
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	20

Лопаточный аппарат турбины рассчитан и настроен на работу при частоте вращения ротора 50 с-1 (3000 об/мин), что соответствует частоте электрического тока в сети 50 Гц.

Турбина имеет валоповоротное устройство (ВПУ) с приводом от электродвигателя для вращения ротора при пусках и остановах турбины, а также во время ремонтных и наладочных работ. ВПУ имеет механизм ручного и дистанционного включения, а также устройство для проворачивания ротора вручную. Предусмотрена блокировка на включение ВПУ при отсутствии необходимого давления масла на смазку подшипников. ВПУ автоматически выходит из зацепления при повышении частоты вращения ротора выше частоты вращения, создаваемого им. Подача масла на смазку деталей ВПУ при его работе осуществляется от маслопровода подвода масла на смазку подшипников.

Турбина снабжена паровыми концевыми уплотнениями. В предпоследние отсеки уплотнений подается пар при давлении несколько выше атмосферного из коллектора уплотнений, давление в котором автоматически поддерживается электронным регулятором.

Из последних отсеков уплотнений паровоздушная смесь отсасывается эжектором уплотнений.

Турбина допускает пуск и последующее нагружение после простоя любой продолжительности.

В турбине предусмотрена возможность применения воздушного расхолаживания. Система воздушного расхолаживания включает в себя эжектор расхолаживания и предназначена для сокращения продолжительности остывания турбины до температур, при которых может быть отключена система смазки турбины, остановлено валоповоротное устройство и начаты ремонтные работы. Эжектор расхолаживания устанавливается на оперативной отметке обслуживания.

Для обеспечения дистанционного управления системой дренажей при пусках и остановах турбины арматура системы дренажей снабжена электроприводами.

Турбоустановка размещается в машинном зале. Обслуживание паровой турбины выполняется с оперативной отметки обслуживания.

Высота фундамента турбоагрегата, считая от уровня пола конденсационного помещения до уровня оперативной отметки обслуживания, составляет плюс 8,000 м.

Маслобак турбины с маслоохладителями расположен на площадке турбины отм. 7.000 и огражден защитным кожухом.

Данные по ресурсу работы паровой турбины и показателям надежности

Назначенный срок службы ПТ 40 лет.

Ресурс деталей и элементов турбины, работающих при температуре более 450°C составляет 220000 часов, ресурс трубопроводов 200000 часов.

Средняя наработка на отказ турбины и поставляемого с ней оборудования подсчитанная за 5 лет составляет 8000 ч.

Коэффициент готовности турбины подсчитанный за 5 лет 0,98.

Срок службы между капитальными ремонтами 6 лет.

Вспомогательные системы паровой турбины:

- система маслоснабжения;
- система регенерации.
- система автоматического регулирования и защиты, дистанционное управление и контроль;

						Док. №	Лист
						 Apx. № 027-ΠT1-Π3	21
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	21

Инв. № подл. По

Система маслоснабжения турбины обеспечивает маслом систему смазки подшипников, включая подшипники генератора и систему регулирования.

Подача масла в систему маслоснабжения во время работы турбины производится центробежным главным масляным насосом (ГМН), размещенным в корпусе переднего подшипника. Вал насоса жестко соединен с валом турбины.

Масло от ГМН подается в систему регулирования и одновременно к двум последовательно включенным инжекторам. Система маслоснабжения турбины рассчитана для работы на турбинном масле Т-22 ГОСТ 32–74, Тп-22 с присадками ГОСТ 9972–74, Тп-22С марки 1 или 2 ТУ 38.101821-2001.

Для подачи масла в период пуска турбоагрегата предусмотрена установка пускового масляного электронасоса, который используется также при монтаже и ревизиях для испытания гидравлической плотности системы маслоснабжения. Насос приводится в действие электродвигателем переменного тока.

Снабжение маслом подшипников при останове турбоагрегата обеспечивается резервным насосом, а при аварийном падении давления за ГМН - либо резервным, либо аварийным насосом, подающими масло в систему смазки до маслоохладителей.

Резервный насос приводится в действие электродвигателем переменного тока, аварийный насос - электродвигателем постоянного тока, питаемым от аккумуляторной батареи станции.

Резервный и аварийный насосы автоматически включаются в работу при понижении давления масла и, кроме того, могут быть независимо пущены со щита ключами управления.

При дальнейшем аварийном падении давления масла турбина отключается и подается аварийный сигнал. При этом же давлении размыкается цепь питания электродвигателя валоповоротного устройства, что исключает возможность его работы при отсутствии подачи масла на подшипники турбины.

На напорной линии системы смазки после маслоохладителей установлен полнопроходный сдвоенный фильтр тонкой очистки, через который пропускается масло, поступающее на смазку подшипников турбоагрегата. Загрязнение фильтрующих элементов отслеживается измерением перепада давлений на фильтре.

Система маслоснабжения имеет масляный бак. В баке установлены два ряда рам сдвоенных сетчатых фильтров. Фильтры разделяют маслобак на два отсека сливной (грязный) и чистый. Фильтры первого и второго ряда съемные и двойные, поэтому могут поочередно выниматься для чистки во время работы турбины. Уровень масла в баке контролируется по местному механическому указателю уровня и дистанционно по показаниям на щите управления с технологической сигнализацией при минимальном и максимальном уровнях масла в баке и при недопустимой разности уровней масла в отсеках в случае загрязнения фильтров.

Маслобак имеет два аварийных патрубка для аварийного слива масла в станционные ёмкости, позволяющие произвести опорожнение наибольшего объема маслосистемы.

Конструкция бака предусматривает эффективное выделение примешенного к маслу воздуха, достаточное для устойчивой работы масляных насосов.

В масляный бак встроена инжекторная группа, в которую входят главный инжектор и инжектор смазки.

Для охлаждения масла в масляный бак встроены четыре маслоохладителя. Конструкция маслоохладителей исключает возможность попадания масла в охлаждающую жидкость. Допускается отключение одного (любого) из маслоохладителей, как по охлаждающей жидкости, так и по маслу для чистки при

Подп. и дата	
Инв. № подл.	

Взам. инв. №

						Док. №
						 Арх. № 027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

Лист 22 полной нагрузке турбины и температуре охлаждающей жидкости не более 33 °C. Давление воды в маслоохладителях может превышать давление масла не более, чем на $0,024~\mathrm{M}\Pi a~(0,25~\mathrm{krc/cm^2}).$

Регенеративная установка

Регенеративная установка в пределах схемы, разрабатываемой производителем ПТ, обеспечивает подогрев основного конденсата паром, отбираемым от турбины. Она включает в себя охладители эжектора уплотнений, сальниковый подогреватель, ПНД, а также трубопроводы с необходимой арматурой. Также предусматривается отбор пара на деаэратор.

Подогреватель низкого давления ПНД предназначен для подогрева основного конденсата перед подачей его в деаэратор.

ПНД вертикальный, поверхностный, состоит из корпуса, съемной водяной камеры и выемной трубной системы из U-образных труб.

В подогревателе предусмотрен контроль уровня. Подогреватель рассчитан по водяной стороне на полное давление конденсатных насосов при работе на закрытую задвижку.

Сальниковый подогреватель предназначен для отсоса пара из камеры переднего концевого уплотнения турбины и использования теплоты этого пара для подогрева основного конденсата.

В качестве сальникового подогревателя используется подогреватель низкого давления поверхностного типа. Сальниковый подогреватель по водяной стороне рассчитан на работу при полном давлении конденсатных насосов.

Эжектор уплотнений предназначен для отсоса паровоздушной смеси из последних камер концевых уплотнений турбины и штоков клапанов и использования большей части теплоты этой смеси для подогрева основного конденсата.

Эжектор уплотнений пароструйный, одноступенчатый. с предвключенным и концевым охладителями. Конденсат греющего пара сливается через гидрозатворы в атмосферный сборник дренажей. Предусмотрен контроль уровня в охладителях, автоматическое регулирование уровня не предусматривается. Эжектор поставляется в состоянии полной заводской готовности.

Эжектор расхолаживания (ЭР) предназначен для системы принудительного воздушного (ускоренного) расхолаживания турбины, применяемой при её остановах. Эжектор одноступенчатый, без охладителей.

Система автоматического регулирования и защиты, дистанционное управление и контроль

Турбина снабжена электрогидравлической системой регулирования и защиты (ЭГСРиЗ). ЭГСРиЗ состоит из трех основных частей: гидравлической части (ГЧСРиЗ), электрической части (ЭЧСРиЗ) и электрогидравлических преобразователей системы регулирования и защиты, реализующих функции преобразования электрических сигналов ЭЧСРиЗ в гидравлические входные сигналы ГЧСРиЗ. ГЧСРиЗ включает в себя:

- автозатвор стопорного клапана;
- сервомоторы регулирующих клапанов ВД.

Каждый сервомотор ВД перемещает свой регулирующий клапан. Сервомоторы регулирующих клапанов ВД является исполнительным устройством системы регулирования.

Автозатвор стопорного клапана является исполнительным устройством системы защиты.

Воздушная конденсационная установка

L								
							Док. №	Лист
							 Арх. № 027-ПТ1-П3	23
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	23

Инв. № подл. Подг

Воздушная конденсационная установка (ВКУ) предназначена для конденсации пара на выходе из паровой турбины.

- температура атмосферного воздуха по сухому термометру плюс 15°C;
- расход пара в конденсатор 173,3 т/ч;
- давление в конденсаторе 8,5 кПа.

Конструкция ВКУ рассчитана на работу в климатических условиях г.Казань и обеспечивает:

- эффективную работу ВКУ во всем диапазоне заданных параметров;
- технико-экономические показатели производства;
- надежность, ремонтопригодность и безопасность эксплуатации оборудования.

Воздушный конденсатор является частью паротурбинной установки и предназначен для создания вакуума на выхлопе из паровой турбины посредством конденсации пара. От эффективности работы конденсатора зависит эффективность работы всей паротурбинной установки.

При работе без паровой турбины пар от котла подается в конденсатор через редукционно-охладительную установку, в которой его давление и температура приводятся к значениям, соответствующим условиям в конденсаторе.

Рабочие характеристики процесса конденсации в системе регулируют с учетом различных условий окружающей среды, нагрузки и условий эксплуатации. Это осуществляется при помощи вентиляторных приводов с индивидуальным частотным регулированием, позволяющим изменять скорость вращения вентилятора в диапазоне 20-100% от номинальной.

ВКУ представляет собой разветвленную систему, включающую в себя следующие подсистемы:

- паропровод;
- теплообменные секции;
- систему очистки:
- систему откачки воздуха и пароструйные эжекторы. Устройство для удаления воздуха предназначено для обеспечения нормального процесса теплообмена в конденсаторе, в ПНД и сальниковом подогревателе и включает в себя два основных и один пусковой эжектор. Один из основных эжекторов является резервным;
 - систему сбора, приема и перемещения конденсата;
 - приемный резервуар для конденсата;
- систему электрооборудования, включающую короба с силовыми кабелями, вспомогательные трансформаторы среднего/низкого напряжения, распределитель мощности по напряжению, силовые кабели для питания потребителей, молниезащиту, освещение и вспомогательное оборудование;
- контрольно-измерительные приборы и автоматику, включающие местные и дистанционные показывающие приборы, провода контрольно-измерительных приборов, местные соединительные коробки, короба с сигнальными кабелями, сигнальные кабели к кроссовым шкафам и локальную систему управления;
- металлоконструкцию, и бетонные колонны в качестве альтернативной платформы;
- тепловую изоляцию основного паропровода, воздуховодов вытяжной вентиляции, трубопроводов слива конденсата и резервуара для конденсата;
- систему подогрева манометрической аппаратуры и трубопроводов малого диаметра, установленных вне помещений.

Паропровод соединяет паровую турбину с теплообменными секциями посредством магистрального паропровода большого диаметра, коллектора и трубопроводов подъема пара. В паропроводе установлены компенсирующие и

Т	рубог	тровс	одов	подъема	а па	іра. В	паропроводе	установлены	компенсирующие	И
						Док. №				Лист
							027-ПТ1-ПЗ			24
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:				24

Инв. № подл. Пс

В теплообменных секциях происходит превращение пара в жидкость за счет отвода теплоты испарения. Теплообменник состоит из оребренных со стороны воздуха трубок и вентиляторов, повышающих скорость теплопередачи.

Полуавтоматическая система очистки водной струей удаляет осадки с поверхностей теплообменника со стороны воздуха, например, пыль, частицы аэрозолей и т.п. Осадки на поверхностях теплообменника ухудшают теплопередачу и вызывают повышение противодавления в конденсаторе.

В целях достижения наивысшей энергоэффективности паровой турбины предусмотрена работа конденсатора с воздушным охлаждением в условиях, близких в полному вакууму. Перед подачей пара в конденсатор с воздушным охлаждением необходимо обеспечить предварительную откачку воздуха из вакуумной системы большого объема. Это осуществляется при помощи пускового эжектора. Пусковой эжектор предназначен для быстрого набора вакуума при пуске турбины. Пусковой эжектор отключается, как только основной эжектор вступает в работу.

Основные эжекторы обеспечивают непрерывное удаление воздуха из системы неконденсирующихся газов и подсасываемого воздуха в рабочем режиме установки. Конденсат пара из охладителей эжекторов сливается через гидрозатворы в приемный резервуар для конденсата. Автоматическое регулирование уровня охладителей не предусматривается.

Пароструйные эжекторы поставляются в сборе в заводской комплектации.

Конденсат из паропровода и теплообменных секций собирается в приемном резервуаре для конденсата, из которого возвращается в тепловой контур при помощи конденсатного насоса.

Секции расположены вне пределов главного корпуса, по обе стороны от конденсационного паропровода последней ступени турбины.

Конструкция коллектора, привода вентилятора и система подкосов позволяет свободно ходить под установкой при плановых осмотрах и техническом обслуживании.

Тепловая схема.

Тепловая схема представлена на листе 027-ПТ1-ТМ1 л.2.

Свежий пар от двух котлов поступает к главной паровой задвижке турбины, установленной перед стопорным клапаном.

Паропроводы контура высокого давления от каждого котла выполнены однониточными и объединяются в общий паровой коллектор. Паровой коллектор соединен с ГПЗ паровой турбины.

Свежий пар подается к блоку стопорно-регулирующих клапанов, в котором размещены стопорный клапан с автозатвором и два регулирующих клапана со своими сервомоторами.

L		BOTIIVI	, oop	DONIO	ТОРШИЙ			
							Док. №	Лист
							 Арх. № 027-ПТ1-П3	25
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	25

Подп. и дата

№ подл.

В турбине предусмотрены отборы пара на собственные нужды:

из межкорпусного пространства цилиндра организован отбор № 1 с параметрами пара P=0,9 МПа, t=190°C;

из камеры проточной части турбины организован отбор № 2 с параметрами пара P=0,33 МПа, t=137°C.

Из выхлопного патрубка турбины пар поступает по трубопроводу отработавшего пара в конденсатор с воздушным охлаждением, установленным вне главного корпуса.

Сконденсировавшийся пар поступает в бак сбора конденсата. Объем бака обеспечивает устойчивую работу конденсатных насосов. При низких нагрузках паровой турбины для поддержания уровня в баке предусматривается линия рециркуляции конденсата.

Неконденсирующиеся газы из воздушного конденсатора и бака сбора конденсата отводятся через воздушные магистрали и удаляются основными эжекторами при работе паротурбинной установки в рабочем режиме. Предусматривается установка двух основных эжекторов, один – рабочий, один - резервный. При работе на частичных нагрузках оборудование обоих модулей находится в работе для поддержания вакуума.

Для обеспечения вакуума в воздушной конденсационной установке в пусковом режиме предусматривается пусковой эжектор. Для расхолаживания турбины при останове – эжектор расхолаживания.

Пар на эжектора подается из коллектора пара высокого давления через РОУ эжекторов.

Конденсат из бака сбора конденсата откачивается конденсатными насосами через систему регенерации турбины в деаэратор. К установке принимаются три насоса конденсата (два - рабочих, один - резервный).

Система регенерации паровой турбины включает в себя охладители основных эжекторов, эжектор уплотнений, сальниковый подогреватель, один ПНД.

Вакуумное пространство подогревателя низкого давления и сальникового подогревателя связано с конденсатосборником трубопровода отработанного пара, вакуум в котором поддерживается так же основными эжекторами.

В деаэраторе осуществляется удаление коррозионно-агрессивных газов из конденсата и подпиточной воды, поступающих в систему питательной воды парового цикла. Питание деаэратора предусматривается паром из нерегулируемого отбора пара из камеры проточной части турбины (отбор №2).

После деаэратора питательная вода поступает на всас питательных насосов и через узел регулирования и экономайзеры поступает в барабан котла.

К установке принимаются 4 питательных насоса с частотно-регулируемым приводом, один из которых резервный, один ремонтный.

Питательная вода насосами рециркуляции из деаэратора подается на подогреватель конденсата и теплообменники рециркуляции дымовых газов.

Для обеспечения пуска котла в любых режимах, сбросах нагрузки паровой турбины, схема предусматривает отвод свежего пара через пуско-сбросную быстродействующую редукционно-охладительную установку (БРОУ) в трубопровод отработанного пара турбины в воздушную конденсационную установку. БРОУ также предназначена для сброса пара в конденсатор при аварийной остановке паровой турбины и при выводе турбоагрегата в ремонт, данный режим позволяет осуществлять термическую обработку мусора при остановленной паровой турбине.

Схемой предусмотрен коллектор пара собственных нужд из отбора паровой турбины. Из коллектора пар подается на подогрев технической воды перед химводоочисткой, на подогреватели первичного и вторичного воздуха котлов,

Подп. и да	
Инв. № подл.	

Взам. инв. №

						Док. №		-
							27-ПТ1-ПЗ	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:		

Лист 26 При снижении параметров в отборе паровой турбины или при отключенной паровой турбине, питание коллектора собственных нужд производится от редукционно-охладительной установки (РОУ СН).

Схема трубопроводов сетевой воды

Система трубопроводов сетевой воды представлена на чертеже 027-ПТ1-ТМ1 л.3.

Система трубопроводов сетевой воды завода является замкнутым контуром без связи с внешними сетями, который состоит из:

- подогревателя сетевой воды;
- насосов сетевой воды;
- баков запаса подпиточной воды;
- насосов подпитки теплосети;
- вакуумных деаэраторов типа Spirovent Air Superior;
- электрических котлов;
- циркуляционного насоса.

Температурный график системы отопления завода 115 – 70 C⁰.

(ЦТП) расположены центральном тепловом пункте распределительные коллекторы прямой и обратной сетевой воды и набор арматуры, которая обеспечивает температурный режим на площадке (См. раздел отопление и вентиляция). Сетевая вода с площадки завода собирается в коллектор и поступает на всас насосов сетевой воды. Подогрев воды осуществляется в сетевом подогревателю Подвод пара В номинальном подогревателе. К осуществляется из отбора паровой турбины. При выводе турбины в ремонт - от коллектора собственных нужд. Конденсат подогревателя направляется в деаэратор питания котлов. Сетевая вода после подогревателя поступает в распределительный коллектор и далее на площадку завода.

Подготовка химочищенной воды для подпитки теплосети осуществляется на ВПУ завода. Для обеспечения надежности работы системы теплоснабжения устанавливаются баки запаса химочищенной воды. Подпиточная вода подается в сеть насосами. Устанавливается два насоса (1-рабочий,1-резервный). На трубопроводе предусмотрена установка расходомерного устройства и регулирующего клапана, поддерживающего давление а системе..

Удаление из сетевой воды растворенных газов предусматривается в вакуумных деаэраторах Spirovent Air Superior, которые устанавливаются на всасе сетевых насосов. Процесс деаэрации происходит постоянно. Теплоноситель, который направляется в сосуд каждого из деаэраторов, сначала деаэрируется, после чего откачивается в систему и т.д.

Аварийная подпитка теплосети осуществляется из противопожарного водопровода, расположенного в главном корпусе.

В аварийном режиме при неработающих паровых котлах для отопления главного корпуса к установке предусматриваются два электрических водогрейных котла теплопроизводительностью 1,6 МВт каждый, которые поддерживают температуру в производственных помещениях на уровне 5°C.

Схема трубопроводов замкнутого контура охлаждения

Система трубопроводов замкнутого контура охлаждения (далее ЗКО) приведена на листе 027-ПТ1-ТМ1 л.4.

						Док. №	Лист
						Арх. № 027-ПТ1-П3	27
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	21

Инв. № подл.

Для увлажнения адиабатических камер ABO в жаркое время года используется исходная вода из существующей сети ПАО "Казаньоргсинтез". Отвод воды после охлаждения предусматривается на технологические нужды, излишки отводятся в канализацию.

В системе замкнутого контура охлаждения (ЗКО) в качестве охлаждающей среды применяется водный раствор этиленгликоля 54%. Система ЗКО обеспечивает охлаждение основного и вспомогательного оборудования станции.

От насосов замкнутого контура охлаждения предусмотрена подача параллельных потоков раствора этиленгликоля на охлаждение следующего оборудования:

- воздухоохладителя генератора;
- маслоохладителей паровой турбины;
- маслоохладителя (гидравлического масла) шредера;
- подшипников ПЭНов;
- пробоотборных точек котлов №1, 2;
- пробоотборных точек паровой турбины;
- пробоотборных точек общестанционных.

Для поддержания давления в системе замкнутого контура охлаждения устанавливается расширительный мембраный бак.

Охлаждение водно-гликолевой смеси осуществляется в аппаратах воздушного охлаждения, расположенных на площадке на отм.~ +10,000 м между главным корпусом и ВКУ.

Для отвода дренажей и воздушников предусматривается приямок для слива раствора этиленгликоля. Из приямка этиленгликоль перекачивается насосом дренажного приямка в передвижную емкость.

Подготовка этиленгликоля осуществляется в машзале главного корпуса. Устанавливается бак V=1 м³ и насос подачи в контур охлаждения оборудования.

Схема трубопроводов технической воды

Система трубопроводов технической воды приведена на листе 027-ПТ1-ТМ1 л.5.

Из внешнего противопожарного кольца техническая вода подается в главный корпус на кольцевой трубопровод противопожарных и производственных нужд. Из трубопровода вода подается на водоподготовительную установку, аварийную подпитку теплосети, в баки золошлаковой воды, на охлаждение подающих бункеров котлов, на мокрые конвейеры шлака и экстракторы котлов, в систему очистки воздушной конденсационной установки.

Из трубопровода противопожарных и производственных нужд повысительными насосами техническая вода направляется в противопожарное кольцо высокого давления, откуда берется вода на лафетные стволы и в систему влажной очистки котла.

Компоновка главного корпуса

Взам. инв. №

Подп. и дата

№ подл.	оди.		Компоновка главного корпуса представлена на 027-ПТ1-ТМ1 л. 6- л.9											
I.	일							Док. №	Лист					
ľ	ИНВ. Г							 Арх. № 027-ПТ1-П3	28					
:	Ż	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	20					

Компоновка главного корпуса завода обеспечивает доступ для обслуживания оборудования, удобство и механизацию ремонтных работ, соблюдение правил противопожарной безопасности и требований норм безопасности труда.

Главный корпус состоит из следующих отделений:

- зоны разгрузки отходов
- бункера отходов
- котельного отделения, в котором установлены котлы и вспомогательное оборудование;
 - отделение очистки дымовых газов;
 - турбинное отделение;
 - блок ОЩУ и административно-бытовых помещений;
 - блок электротехнических помещений и ВПУ;
 - отделения шлакоудаления;
 - участка хранения и транспортировки золы;
 - общезаводская компрессорная;
 - склад масла в таре;
 - зарядная;
 - помещение дизельных погрузчиков;
 - помещение для зарядки электропогрузчика.

Зона разгрузки отходов

Зона разгрузки ТКО представляет собой отделение главного корпуса, где происходит доставка с последующей разгрузкой мусоровозов. В зоне разгрузки вдоль стены расположены 7 технологических отвальных проемов для разгрузки мусоровозов в бункер отходов, оснащенных воротами вертикального подъема для отсекания отделений зоны разгрузки и бункера отхода.

Бункер отходов

Бункер отходов размером в плане 57,4×26,1 м предназначен для накопления и временного хранения отходов для последующего термического обезвреживания. Бункер оборудован двумя грейферными кранами. Вдоль крановых путей предусматриваются проходы. Предусмотрены площадки ДЛЯ технического обслуживания ремонта грейферов. Над места для площадками предусматриваются тали для обслуживания оборудования грейферных кранов.

На отметке +23,00 м, по трем сторонам бункера располагается площадка шириной 9 м. По длинной стороне на отм. +23,00 м располагаются два приемных бункера, по одному на каждый котел, через которые с помощью грейферных кранов ТКО подаются в топку котла. Бункер отходов оснащен шахтой со шредером для измельчения крупногабаритного мусора. Помимо шредера в данном отделении размещены два бака «зольной воды», а также станция хранения и приготовления карбамида. Также имеются две шахты для опускания грейферных захватов на отметку 0.000 для обслуживания и ремонта.

Котельное отделение

Котельное отделение имеет размеры в плане 45,0×58,0 м.

В котельном отделении расположены два паровых котла, в которых происходит сжигание ТКО.

Автовъезд в котельное отделение предусмотрен в осях «10/1» и «10/2».

							Док. №	Лист
							Арх. № 027-ПТ1-П3	29
И	зм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	29

Инв. № подл.

В котельном отделении предусматривается система шлакоудаления от разгружателей шлака котлов.

При пересыпке шлака в главный шлаковый конвейер, предусматривается сепарация шлака в четыре контейнера объемом 2,5 м³ для отсеянных крупных фракций с последующим вывозом электрпогрузчиком в 4-е контейнера объемом 8 м³, расположенные на площадке.

Главный шлаковый конвейер состоит из двух «ниток» ленточных роликовых конвейеров.

В отделении шлакоудаления над местом узла пересыпки с главного шлакового конвейера установлены подвесные железоотделители, которые сбрасывают металлолом в контейнер объемом от 8 до 15 м³. В отделении шлакоудаления предусмотрен отдельный въезд для автомобиля, оборудованного системой мультилифт, для вывоза заполненного контейнера и для установки пустого под загрузку.

На отм. – 4.500 в котельном отделении устанавливается бак слива из котлов с насосами.

Отделение очистки дымовых газов

Отделение очистки дымовых газов имеет размеры в плане – 39,0×58,0 м. В отделении расположены две линии, каждая из которых состоит из:

- реактора (сухая очистка дымовых газов);
- блока тканевых рукавных фильтров;
- дымососа;
- выносного экономайзера дымовых газов;
- системы контроля выбросов;
- системы пневмотранспорта твердых веществ в силос;
- системы удаления зольного остатка;
- газоходов.

На нужды двух линий в отделении очистки дымовых газов расположено следующее оборудование:

- силос активированного угля;
- два силоса гашеной извести;
- установки обработки активированного угля;
- пневмокамерные насосы гашеной извести.

Зола из-под бункеров тканевых рукавных фильтров подается цепными конвейерами в накопительный бункер золы.

Автовъезд в отделение очистки дымовых газов предусмотрен в осях «А» и «Б».

Турбинное отделение.

Турбинное отделение с примыкающими помещениями электротехнических устройств имеет размеры 56х72 м.

В турбинном отделении расположена турбоустановка установленной мощностью 55 МВт, компоновка – бесподвальная.

В пределах площадки турбины расположены: блок стопорно-регулирующих клапанов, эжектор пара уплотнений, подогреватель сальниковый, подогреватель низкого давления ст.№1, эжектор расхолаживания.

Маслосистема ПТУ (маслобак с рабочим маслонасосом, маслоохладители) выгорожена на площадке обслуживания турбины отм. +7.00 м. Пусковой, аварийный, резервный насосы располагаются на отм.0.000 в пределах турбины.

L								
							Док. №	Лист
							 Арх. № 027-ПТ1-ПЗ	30
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	30

Інв. № подл.

Подогреватель сетевой воды (ПСВ) располагается на отдельно стоящей площадке отм.+6.000, рядом на отм. 0.000 м устанавливаются насосы конденсата сетевого подогревателя.

Для подогрева сетевой воды на собственные нужды Завода в пусковой период и при остановке котлов устанавливаются электрокотлы.

Баки запаса чистого конденсата V = 63 м3 (4шт.) располагаются справа от паровой турбины, около баков устанавливаются насосы нормального и аварийного добавка.

Деаэраторная этажерка встроена в турбинное отделение». На отм.0.000 устанавливаются насосы основного конденсата, насосы замкнутого контура охлаждения, компенсационный бак, насосы питательной воды, насосы рециркуляции питательной воды, насосы подпиточной воды теплосети.

На отм. 4.000 устанавливаются: конденсатосборник основного конденсата, теплообменник рециркуляции питательной воды.

На отм.9.000 располагаются пусковые БРОУ, РОУ собственных нужд, паровые коллекторы и трубопроводы.

На отм.15.000 устанавливаются деаэратор питания котлов и установка основных эжекторов турбины.

Основные и пусковой эжекторы конденсатора расположены в деаэраторной этажерке.

Для обслуживания и ремонта турбины и вспомогательного оборудования предусмотрен мостовой кран г/п 20,0 тонн.

Аппараты воздушного охлаждения вспомогательного оборудования устанавливаются вне главного корпуса рядом с воздушными конденсаторами турбины.

Предусматривается система вакуумной уборки технологического оборудования. Вакуумное пылеудаление необходимо в производственных процессах, которым сопутствует перемещение больших объёмов сыпучих и пульповых материалов (конвейерные транспортеры). Установка вакуумной уборки представляет собой комплекс агрегатов:

- турбонасос многоступенчатый вихревой вентилятор с прямым приводом. Для обеспечения защиты механизма от повреждения и загрязнения и стабилизации теплового режима установка оснащена защитным кожухом.
- фильтрующий модуль, совмещающий в себе функции предварительного циклона и промышленного воздушного фильтра, с системой разгрузки. Регенерация фильтрующего элемента установки происходит автоматически с помощью импульсов сжатого воздуха. Установка подключена к сети сжатого воздуха. Периодичность очистки программируется на контрольной панели.
- сеть вакуумных трубопроводов, состоящая из магистрального трубопровода, проходящего через все обслуживаемые помещения, с ответвлениями на подлежащие уборке участки и отметки. На ответвлениях установлены клапаны подключения гибких шлангов. Клапаны оснащены микровыключателями, которые при открытии клапана дают сигнал на центральную панель управления и инициируют запуск тягового устройства. При закрытии всех клапанов вакуумная установка выключается.
- комплект гибких шлангов и уборочного инвентаря всасывающих насадок для уборки пыли с различных поверхностей.

Отделение шлакоудаления

L								
	•						Док. №	Лист
							Арх. № 027-ПТ1-П3	21
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	31

Отделение шлакоудаления размером в плане 26,2×61,0 м состоит из:

- узла пересыпки с железоотделителями;
- бункера-накопителя объемом 2500 м³, что соответствует 3-х суточному выходу шлака.
 - двух автомобильных пунктов загрузки шлака;
 - сквозного проезда.

В отделении шлакоудаления установлены два грейферных крана для перегрузки шлака из бункера-накопителя в самосвалы.

Участок хранения и транспортировки золы

Из накопительного бункера пневмонасосами зола подается в силосы сухого хранения золы, расположенные вне главного корпуса. Конусная часть силоса оборудована системой выгрузки для отгрузки золы в цементовозы.

Общезаводская компрессорная

Общезаводская компрессорная предназначена для обеспечения потребности в сжатом воздухе (общий расход 5320 нм³/час):

- технологических нужд;
- пневмоприводной арматуры;
- при проведении ремонтов;
- подключения пневмоинструмента;
- продувки газопроводов;
- других потребителей.

Взам. инв. №

Подп. и дата

1нв. № подл.

Общезаводская компрессорная пристроена к главному корпусу. Размеры в плане – 12,0×15,0 м.

На отм.0.000 устанавливаются:

- винтовой компрессор производительностью 44,3 нм³/мин 4x50% шт. (3 раб., 1 резерв.);
 - сепаратор для отделения конденсата из сжатого воздуха 4 шт.

На отм.+10.000 устанавливаются:

- адсорбционный осушитель производительностью 2380 нм³/час– 2 шт. (1 раб., 1 резерв.);
 - фильтры до и после адсорбционного осушителя.

В составе адсорбционного осушителя применяется две резервированные сушильные колонны, в которых сжатый воздух осушается до точки росы не выше - минус 40°С. После адсорбционного осушителя сжатый воздух распределяется между системами технологического и инструментального воздуха и направляется в соответствующий воздухосборник, а оттуда в систему распределения технологического и инструментального воздуха всего завода. Два воздухосборника устанавливаются снаружи помещения в ограждении.

В составе системы предусмотрен третий воздухосборник, предназначенный для сжатого воздуха, необходимого для впрыска раствора мочевины в систему подавления оксида азота в уходящих газах. Осушение сжатого воздуха не требуется. Для предотвращения замерзания конденсата устанавливается воздухосборник в главном корпусе в районе потребления.

Рабочее давление на выходе из воздухосборников 0,8 МПа.

Максимальное давление в сети сжатого воздуха 1,0 МПа.

Компрессора и вспомогательное оборудование оснащены всеми необходимыми трубопроводами, арматурой, и приборами КИП и А.

						Док. №	Лист
						 Арх. № 027-ПТ1-П3	22
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	32

Склад масла в таре.

Закрытый склад в мелкой таре предназначен для хранения турбинного, трансформаторного и индустриальных масел в бочках.

Предусматривается закрытый склад хранения масел в бочках емкостью 200 литров каждая и заправочный модуль ДТ для погрузчиков вместимостью 1 м³.

Склад располагается в пристройке к главному корпусу. Размеры на плане 3 х 5,5 м.

Объем хранящегося турбинного масла равен запасу на доливки не менее 45дневной потребности, и составляет - 1,1 м³ (5 бочек по 200 л).

Объем хранящегося трансформаторного масла равен 10% объема масла, залитого в трансформатор наибольшей емкости и составляет - 2,2 $\rm M^3$ (11 бочек по 200 л).

Так же на складе масла в таре хранится запас смазочных материалов для вспомогательного оборудования в объеме 45-дневной потребности.

Масла поступают на склад в затаренном виде (металлические бочки объемом 200 л).

Бочки хранятся на поддонах с отбортовкой, предохраняющих разлив масла. На каждом поддоне размещается по 2 бочки.

Доставка масла к месту использования обеспечивается передвижными транспортными средствами.

В складе масла в таре для погрузочно-разгрузочных работ предусмотрены штабелер и тележка гидравлические.

Тепловая изоляция и антикоррозионная защита

Тепловая изоляция

Тепловой изоляции подлежит оборудование и трубопроводы с температурой среды свыше 45°С расположенных в помещении, а на открытом воздухе исходя из режима работы и условий эксплуатации оборудования и трубопроводов.

Технические решения, принятые в проекте, соответствуют исходным данным, техническим условиям и действующим на территории Российской Федерации техническим требованиям экологических, санитарно-технических, противопожарных и других норм по обеспечению безопасной эксплуатации объекта.

Расчет толщины тепловой изоляции и выбор конструкции выполнялся с учётом требований СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003».

Конструкция изоляции обеспечивает тепловую защиту всех элементов оборудования и трубопроводов, и исключает возможность образования участков с локальным повышением температуры на поверхности теплоизоляционной конструкции.

Материалы, используемые для тепловой изоляции, соответствуют стандартам и техническим условиям предприятий-изготовителей, негорючие, не содержат асбест, обладают необходимыми физико-механическими и теплофизическими свойствами.

При определении толщины изоляции по нормированной плотности теплового потока за расчетную температуру окружающей среды принята:

- для изолируемых поверхностей, расположенных в помещении – 20 °C;

						Док. №	Лист
						 Apx. № 027-ΠT1-Π3	33
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	. აა

Подп. и дата

нв. № подл. Под

- для изолируемых поверхностей, расположенных на открытом воздухе, средняя за год температура окружающей среды – 4,2 °C.

При определении толщины тепловой изоляции по заданной температуре на поверхности изоляции принимается не более:

- а) для изолируемых поверхностей, расположенных в помещении и содержащих вещества:
 - с температурой выше 100 °C 45 °C
 - с температурой 100 °C и ниже 35 °C.
- б) для изолируемых поверхностей, расположенных на открытом воздухе при металлическом покровном слое 55 °C.
- В проектной документации для тепловой изоляции оборудования и трубопроводов приняты теплоизоляционные изделия Rockwool.

Теплоизоляционные конструкции, принятые в проекте:

- а) для газоходов прямоугольного сечения и цилиндрической части баков:
- маты прошивные Wired mat 80 из каменной ваты на металлической сетке из оцинкованной проволоки или плиты TEX БАТТС плотностью 75-100 кг/м³;
 - профнастил МП-20А из оцинкованной стали толщиной 0,8 мм.
 - б) для вспомогательного оборудования и трубопроводов:
- маты прошивные Wired mat 80 из каменной ваты на металлической сетке из оцинкованной проволоки;
- сталь оцинкованная толщиной 0,5-1,0 мм (в зависимости от диаметра изолируемого объекта и месторасположения объекта).
 - в) для трубопроводов диаметром Ду18 -100 мм:
 - цилиндры минераловатные;
 - сталь оцинкованная толщиной 0,5 мм.
 - г) для съемной изоляции арматуры и фланцевых соединений:
- для муфтовой и фланцевой арматуры, для фланцевых соединений с диаметром фланца не более 108 мм цилиндры из минеральной ваты;
- для арматуры и фланцевых соединений с диаметром фланца более 108 мм маты теплоизоляционные прошивные в обкладке из стеклоткани со всех сторон;
- сталь оцинкованная толщиной 0,5-0,8 мм (в зависимости от диаметра изолируемого объекта).

Обмуровка и тепловая изоляция паровых котлов и паровой турбины выполняются по документации заводов-изготовителей данного оборудования.

Антикоррозионная защита

Антикоррозионная защита (АЗ) наружных поверхностей технологического оборудования, трубопроводов и строительных конструкций выполняется с учетом климатических условий площадки завода в соответствии с СП 131.13330.2012 «Строительная климатология. Актуализированная версия СНиП 23-01-99*».

Для защиты от наружной коррозии поверхность оборудования и трубопроводов окрашивается красками и эмалями по предварительно подготовленной поверхности.

Антикоррозийная защита внутренних поверхностей оборудования и трубопроводов выполняется с учетом агрессивности рабочей среды в соответствии с рекомендациями, изложенными в нормативных документах и технологией поставщика АЗ.

Во всех случаях предусматривается применение эффективных современных материалов и технологий.

Опознавательная окраска принимается в соответствии с ГОСТ 14202-69.

						Док. №	Лист
						 Арх. № 027-ПТ1-П3	34
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	34

нв. № подл.

Механизация ремонтных работ.

Котельное отделение.

Для обслуживания оборудования и проведения ремонтных работ в отделении паровых котлов использование мостового крана не предусматривается.

Сервисное обслуживание и ремонт котельного оборудования производится грузоподъемными устройствами (тали, лебедки), которые обеспечивают перенос оборудования в ремонтную зону.

В осях «8/10» -«10», «10/5» -«10/2» рядах «А/2» - «А» и «Е» - «И», «К»-«Л» расположены лифтовые блоки с грузопассажирскими лифтами, выходы с лифтов связаны с площадками котла. Лифт имеет выход на кровлю деаэраторной этажерки.

По оси «1» в рядах «А» - «Б» и «А/3» - «А/4» выполняются автомобильные въезды.

Турбинное отделение и деаэраторная этажерка.

Для обслуживания оборудования и проведения ремонтных работ в отделении паровой турбины предусматривается использование мостового опорного электрического крана грузоподъемностью 20 т. Отметка оголовка рельса подкрановых путей +25,000 м.

Компоновкой обеспечиваются габариты выема ротора генератора. Ремонтная зона находится на отм.0.000 в осях «6» - «7» ряд «Ж» - «М». По оси «8» в рядах «Л» – «М/1» предусматривается автомобильный въезд.

Для возможности обслуживания оборудования и арматуры, которая находится в деаэраторной этажерке над отм. 15.000 устанавливается кран подвесной грузоподъемностью 5,0 т, над отм. 9.000 – таль грузоподъемностью 5,0 т, над отм.0.000 - кран подвесной грузоподъемностью 1,0 т. В площадках деаэраторной этажерки предусматриваются проемы, перекрытые съемными настилами.

Отделение электротехнических устройство расположено в осях «1» - «6», рядах «М» – «Н».

Мастерская

Взам. инв. №

Подп. и дата

Инв. № подл.

Для осуществления текущих и профилактических ремонтов технологического оборудования проектом предусматривается устройство ремонтно-механической мастерской с установкой следующего оборудования:

- таль передвижная червячная г/п 1 т 1 шт.;
- вертикально сверлильный станок 2H135-1 1 шт.;
- станок токарно-винторезный 16К25 1 шт.;
- станок точильно-шлифовальный ВЗ-379-01 с пылесосом 1 шт.;
- широкоуниверсальный консольно-фрезерный станок 6Р83Ш 1 шт.;
- станок трубогибочный универсальный УГС 6/1А 1 шт.;
- верстак слесарный с тисками 5 шт.;
- тумбочка инструментальная 5 шт.;
- шкаф инструментальный 5 шт.;
- сварочный пост 1 шт;
- кран гуськовый гидравлический передвижной 1 шт;
- гидравлическая тележка:

	-		мкрат				
						Док. №	Лист
						Арх. № 027-ПТ1-П3	35
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	33

1.2.3 Склад баллонов газа

Закрытый склад предназначен для приема, совместного хранения и выдачи технических газов, габариты в плане 6,0×3,0 м.

Используются следующие газы:

- кислород для проведения сварочных работ;
- углекислый газ для установок пожаротушения;
- ацетилен для проведения сварочных работ.

Невзрывоопасные и взрывоопасные газы хранятся раздельно в отделениях склада, разделенных противопожарной стеной на всю высоту помещения.

Каждое отделение склада рассчитано на хранение сред в баллонах (по 12 баллонов по 40 литров в каждом контейнере):

- склад баллонов кислорода и углекислого газа (категория склада по пожаровзрывобезопасности по СП12.13130.2009, 123-Ф3 «Д»);
- склад баллонов ацетилена (категория склада по пожаровзрывобезопасности по СП12.13130.2009, 123-Ф3 «А»).

Во всех отделениях хранятся контейнеры с наполненными и с порожними баллонами.

К каждому отделению склада предусмотрен подъезд автомобильного транспорта.

Разгрузка-погрузка на автомашины, транспортировка контейнеров с 12-ю баллонами внутри склада производится с использованием тали грузоподъемностью 1 т. В помещении склада кислорода и углекислого газа предусмотрена ручная таль общепромышленного назначения. В помещении склада ацетилена предусмотрена ручная таль взрывобезопасного исполнения.

1.2.4 Система газоснабжения

Природный газ является вспомогательным топливом.

Максимальный часовой расход природного газа составляет 10 000 нм3/ч.

Для подачи природного газа предполагается строительство внеплощадочного газопровода от точки врезки (согласно техническим условиям поставщика газа) до площадки завода.

Для обеспечения необходимых параметров газа предусматривается монтаж газорегуляторного пункта блочно-контейнерного исполнения полной заводской готовности (ГРПБ).

В ГРПБ предусмотрено 3 помещения:

- помещение технологическое;
- помещение КИПиА;
- помещение индивидуального теплового пункта.

Технологическая схема ГРПБ включает в себя две идентичные линии редуцирования газа (одна рабочая, одна резервная).

В состав каждой линии редуцирования входит:

- запорная арматура на входе;
- поворотная заглушка;
- штуцер подачи продувочного агента;
- газовый фильтр;

						Док. №	Лист
						Арх. № 027-ПТ1-П3	26
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	36

№ подл. Подп. и дата Взам. инв. №

- расходомерное устройство;
- запорный предохранительный клапан;
- регулятор давления;
- сбросной предохранительный клапан;
- продувочный газопровод;
- поворотная заглушка;
- запорная арматура на выходе.

Давление газа на входе в ГРПБ будет определено после получения ТУ на подключение к системе газораспределения, давление газа после ГРПБ — 0,3 МПа (уточняется при дальнейшем проектировании).

дата Взам. инв. Nº	
дата	
Подп. и дата	
У На Изм. Кол.уч Лист № док. Подп. Д	Док. №

1.2.5.1 Главная электрическая схема

Основными техническими решениями предусматривается строительство завода по термическому обезвреживанию твердых коммунальных отходов (далее-3TO TKO).

Завод предназначен для термического обезвреживания твердых коммунальных отходов с выработкой электрической энергии.

На проектируемом заводе предусматривается установка одной паротурбинной установки (далее-ПТУ) суммарной электрической мощностью 55 МВт, в составе:

- паровая конденсационная турбина;
- -генератор с воздушным охлаждением номинальной электрической мощностью 63 MBт и напряжением 10, 5кВ.

Система возбуждения генератора поставляется комплектно с генератором.

Согласно техническому заданию, предусматривается параллельный режим работы ЗТО ТКО с энергосистемой. При отключении генерирующего оборудования завод остается в работе, получая электроснабжение от энергосистемы.

Выдача мощности предполагается посредством двух воздушных линий (ВЛ). Для выдачи мощности и связи с энергосистемой предусматривается сооружение открытого распредустройства (далее ОРУ). Уровень напряжения, на котором выдается электрическая мощность, а также конфигурация схемы ОРУ определяются решениями работы "Схема выдачи мощности".

Подключение генератора ПТУ к ОРУ принимается по схеме «блок генератортрансформатор» через повышающий двухобмоточный трансформатор мощностью 80 МВА. Мощность блочного трансформатора выбирается из условия передачи всей активной и реактивной мощности, вырабатываемой ПТУ. На генераторном напряжении блока ПТУ предусматриваются элегазовое распределительное устройство с выключателем, разъединителем, заземляющими ножами, трансформаторами тока и напряжения, ограничителями перенапряжений.

Связь генератора с блочным трансформатором осуществляется пофазноэкранированным токопроводом.

Типы и технические характеристики устанавливаемого электротехнического оборудования будут уточнены на последующих стадиях проектирования.

Принципиальная схема электрических соединений приведена на чертеже 027-ПТ1-ЭМ1.

1.2.5.2 Схема электрических соединений с. н. 10,5 кВ

Электроснабжение потребителей собственных нужд блока ПТУ и потребителей ЗТО ТКО на напряжении 10 кВ осуществляется от проектируемого РУСН-10,5 кВ по I категории электроснабжения. РУСН-10,5 кВ выполняется с одной системой сборных шин и состоит из 2 рабочих секций.

Рабочее питание секций РУСН-10,5 кВ осуществляется под развилку, от линии рабочего питания, подключенной отпайкой к токопроводу генератора ПТУ, между генераторным выключателем и блочным трансформатором. В цепи линии рабочего питания РУСН-10,5 кВ устанавливается разделительный (рабочий) трансформатор собственных нужд (ТСН) мощностью 16000 кВА и напряжением 10,5/10,5 кВ.

Резервное питание секций РУСН-10,5 кВ осуществляется от резервного

Изм. Кол.уч Лист № док. Подп. Дата Файл:	ı							Док. №
Изм. Кол.уч Лист № док. Подп. Дата Файл:								•
		Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

Лист 38

Инв. № подл.

трансформатора собственных нужд (РТСН) мощностью 16000 кВА, подключаемого к ОРУ. Между вводами рабочего и резервного питания секций РУСН-10,5 кВ предусматривается АВР.

Трансформатор собственных нужд и резервный трансформатор оснащаются устройствами РПН.

Мощность и типы данных трансформаторов будет уточняться при разработке проектной документации.

Секции РУСН-10,5 кВ комплектуются из шкафов КРУ заводского изготовления с вакуумными выключателями и микропроцессорными защитами.

Связь трансформаторов ТСН и РТСН с секциями рабочего питания 10,5 кВ выполняется комплектными закрытыми токопроводами.

На случай аварийного останова ЗТО ТКО предусмотрена установка двух дизель- генераторов. К установке предусматривается дизель-генераторная станция стационарного контейнерного исполнения и полной заводской готовности. Мощность дизель-генераторов будет определена на дальнейшей стадии проектирования из учета электроснабжения оборудования для безопасной остановки технологического оборудования завода.

1.2.5.3 Схема электрических соединений с. н. 0,4 кВ

Электроприемники 0,4 кВ 3ТО ТКО по надежности электроснабжения относятся в основном к 1-й и 2-й категории, с наличием потребителей особой группы 1 категории. К потребителям 1-ой особой группы относятся : аварийный маслонасос, система АСУ ТП, аварийное освещение, пожарные насосы.

Для подключения потребителей собственных нужд напряжением 400/230 В ПТУ и завода предусматривается распределительные устройства 0,4кВ (РУСН-0.4кВ).

Согласно решениям базового проекта, в проекте организуется:

- двухсекционное РУСН-0,4 кВ для электроснабжения установки для термического уничтожения мусора (инсинератора) и котельного электрооборудования котлов №1 и №2;
- -двухсекционное РУСН-0,4кВ для электроснабжения оборудования удаления дымовых газов котлов №1 и №2;
- -двухсекционное РУСН-0,4 кВ для электроснабжения конденсаторной системы воздушного охлаждения;
 - двухсекционное РУСН-0,4 кВ для системы подачи воды;
 - РУСН-0.4 кВ ПТУ.

Каждая секция проектируемых РУСН-0,4 кВ получает питание от своего рабочего трансформатора собственных нужд 10/0,4 кВ, подключаемого к разным секциям РУСН-10,5 кВ. Резервное питание секций РУСН-0,4кВ оборудования предусматривается по схеме взаимного резервирования двух рабочих трансформаторов — неявный резерв. Мощность рабочих трансформаторов выбирается из расчета нагрузки обоих секций.

Переключение питания с рабочего на резервный ввод осуществляется автоматически (ABP). Мощность рабочих трансформаторов собственных нужд будет уточняться на последующих стадиях проектирования, после уточнения состава технологического оборудования.

Все трансформаторы собственных нужд 10,5/0,4 кВ принимаются с «сухой» изоляцией и устанавливаются в помещениях РУСН-0,4 кВ рядом с соответствующими секциями. Распределительные устройства 0,4 кВ комплектуются шкафами заводского изготовления модульной конструкции с выдвижными блоками и автоматическими выключателями.

						Док. №	Лис
						Äpx. № 027-ПТ1-П3	20
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	39

Инв. № подл.

Шкафы предназначаются для ввода и распределения электроэнергии, управления электродвигателями механизмов собственных нужд завода и вспомогательного оборудования ПТУ и включают в себя аппараты коммутации силовых цепей, защиты, управления и автоматики, измерения, регулирования и сигнализации, кроме того ориентируются на совместную работу со средствами автоматизации в составе АСУ ТП ЭТО.

Для электродвигателей технологического оборудования, на основании заданий технологов, предусматривается установка частотно-регулируемых приводов (ЧРП).

Для питания неответственных потребителей мощностью до 50 кВт предусматриваются вторичные силовые сборки 400/230 В без АВР, для питания ответственных потребителей – сборки 400/230 В с АВР.

Питание потребителей, присоединяемых к РУСН-0,4 кВ и вторичным силовым сборкам, осуществляется по системе заземления TN-S.

электроснабжения потребителей Надежность насосной станции пожаротушения и хозяйственно-питьевого водоснабжения обеспечивается наличием рабочего и резервного питания вторичной силовой сборки ПНС, предусмотренных от разных секций РУСН-0,4 кВ ПТУ главного корпуса. При исчезновении рабочего питания сборки происходит автоматическое переключение на резервное питание. Для обеспечения электроснабжения противопожарных насосов по первой категории особой группы надежности предусматривается возможность подключения электродвигателей пожарных насосов к проектируемым дизель-генераторам.

1.2.5.4 Система оперативного тока

Для питания электродвигателя аварийного маслонасоса, приводов выключателей, систем АСУ ТП, устройств управления, автоматики, сигнализации и релейной защиты предусматривается система оперативного постоянного тока напряжением 220 В.

В составе установки постоянного тока предусматривается свинцовокислотная аккумуляторная батарея=220 В закрытого типа, зарядно-подзарядные устройства, устройство стабилизации напряжения, разрядное устройство с системой контроля разряда и щит постоянного тока. К установке предлагается аккумуляторная батарея импортного производства со сроком службы не менее 20 лет, размещаемая в помещении категории В4.

Аккумуляторная батарея работает в режиме постоянного подзаряда. Емкость батареи выбирается согласно расчету нагрузок потребителей постоянного тока и дальнейших будет представлена на стадиях проектирования. двухсекционный Предусматривается к установке ЩИТ постоянного оборудованный системами контроля изоляции, измерения и поиска «земли», устройством контроля напряжения, устройством мониторинга и микропроцессорной системой автоматики для передачи информации в систему АСУ ТП ЭТО. Для обеспечения эксплуатации в рабочем и послеаварийном режимах установка постоянного тока оборудована зарядно- подзарядными агрегатами.

В проекте предусматривается система стационарной вентиляции, которая обязательно включается при заряде батареи.

Для надежного электропитания систем КИП, АСУ (автоматизированная система управления), оборудования радиотелефонной связи, модулей ввода/вывода, предусматриваются системы источников бесперебойного питания (далее-ИБП). В случае отключений питания, ИБП гарантирует непрерывность

				,	1 1.15		ваются системы источников беспереобиного питак ключений питания, ИБП гарантирует непрерывно	
							Док. №	Лист
							Арх. № 027-ПТ1-ПЗ	40
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	40

лнв. № подл. | Подг

подачи питания для всех вышеперечисленных систем, в течении установленного времени. Мощность и конфигурация схемы будут уточняться на дальнейшей стадии проектирования.

1.2.5.5 Управление, автоматика и релейная защита

1.2.5.5.1 Управление и автоматика

Управление основным электротехническим оборудованием проектируемой ПТУ и завода предусматривается из помещения объединенного щита управления (ОЩУ), с которого осуществляется управление технологической частью ЗТО ТКО.

Система управления, сигнализации и автоматики выполняется с применением микропроцессорных устройств – автоматизированной системы управления электротехническим оборудованием (АСУ ТП ЭТО), которая является подсистемой АСУ ТП ЗТО ТКО.

Других систем контроля и управления, выполненных на традиционных средствах и дублирующих функции АСУ ТП ЭТО, не предусматривается.

К электрооборудованию, управление и контроль которого осуществляется от АСУ ТП ЭТО, относятся:

- генератор и его система контроля;
- система возбуждения генератора;
- система синхронизации генератора;
- трансформаторы блока и электроснабжения с.н.;
- система синхронизации выключателей 110 кВ (предусмотреть);
- коммутационные аппараты (выключатели, разъединители);
- вводы рабочего и резервного питания с.н. 10,5 кВ;
- устройства РПН рабочего трансформатора с.н. 10,5/10,5 кВ и резервного трансформатора с.н. 115/10,5 кВ;
 - дизель-генератор 10.5 кВ:
- трансформаторы с.н.10,5/0,4 кВ (трансформаторы с.н. 10.5/0.4 включают рабочие и резервные вводы 0,4 кВ);
 - некоторые отходящие присоединения РУСН-0,4 кВ, системы ИБП и СОПТ.

Ряд объектов управления и контроля АСУ ТП ЭТО содержат автономные микропроцессорные системы управления и контроля и используются как подсистемы АСУ ТП ЭТО, а именно:

- устройства МП РЗА генератора и трансформатора блока:
- устройства МП РЗА трансформаторов электроснабжения с.н.;
- устройства МП РЗА присоединений 10 кВ;
- система телемеханики и связи (СТМ и С);
- информационно-измерительной автоматизированная система коммерческого учета электроэнергии (АИИС КУЭ).

Для этих объектов предусматривается обмен информацией с ПТК АСУ ТП ЭТО посредством последовательных цифровых шин.

В составе АСУ ТП ЭТО для элементов главной электрической схемы и схемы собственных нужд предусматриваются следующие виды автоматических устройств:

- АВР шин распределительных устройств с. н. 10,5 и 0,4 кВ ЗТО ТКО;
- автоматическая синхронизация генератора;
- автоматическое регулирование возбуждения генератора.

Противоаварийная и делительная автоматика разрабатывается в составе

р	аботі	Ы ПО	схеме	: выдач	и мог	цности отдельным томом.	
						Док. №	Лист
						Арх. № 027-ПТ1-П3	41
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	41

Инв. № подл.

Объем измерений и сигнализации выполняется в соответствии с требованиями «Правил устройства электротехнических установок» и «Методическими указаниями по объему технологических измерений, сигнализации, автоматического регулирования на тепловых электростанциях».

Функции регистрации параметров переходных электрических процессов (цифровое осциллографирование) и состояния устройств РЗА (регистрация событий) выполняются при помощи встроенных в цифровые устройства РЗА регистраторов переходных процессов.

Основные технические решения по организации системы для передачи инфрормации в диспетчерский центр будут определены во внестадийной работе "Схема выдачи мощности" согласно СТО 59012820.29.020.009-2016 "Релейная защита и автоматика. Автономные регистраторы аварийных событий".

Включение на параллельную работу генератора с сетью производится способом автоматической или точной ручной синхронизации.

Электромагнитная блокировка предусматривается через блок контакты коммутационных аппаратов и заземляющих ножей.

1.2.5.5.2 Релейная защита

Релейная защита основного электротехнического оборудования ПТУ и ЗТО ТКО выполняется с помощью цифровых микропроцессорных устройств защит.

Защита блока генератор-трансформатор с отпайкой на рабочий трансформатор с.н., резервного трансформатора с.н. выполняются с помощью двух взаимозаменяемых комплектов защит. Каждый комплект защит подключается к отдельным обмоткам трансформаторамов тока и напряжения, имеет свой оперативный ток. Комплекты защит могут располагаться как в одном, так и в нескольких шкафах.

Релейная защита каждого из остальных элементов главной схемы осуществляется с помощью одного микропроцессорного устройства защиты и управления. Микропроцессорные устройства располагаются в шкафах КРУ-10,5 кВ. Кроме того, в шкафах КРУ-10,5 кВ предусматривается дуговая защита.

Релейная защита вводов 0,4 кВ располагается в ячейках РУСН-0,4 кВ.

Объем релейных защит предусматривается в соответствии с требованиями Правил Устройства Электроустановок (ПУЭ), «Общими техническими требованиями к микропроцессорным устройствам защиты и автоматики энергосистем» (СО 34.35.310-97) и другими нормативными документами.

Предусматриваются устройства защит, удовлетворяющие ГОСТ на электрическую аппаратуру напряжением до 1000 В, нормам и правилам МЭК по обеспечению электромагнитной совместимости.

1.2.5.6 Кабельное хозяйство

Раскладка кабелей в зданиях, сооружениях и на территории выполняется с учетом надежности и пожарной безопасности.

Для сетей среднего напряжения предусматривается применение силовых трехжильных кабелей с медными жилами, с изоляцией из сшитого полиэтилена, в оболочке поливинилхлорида или с изоляцией и оболочкой из ПВХ пластиката, не поддерживающего горение, с низким дымо- и газовыделением (с индексом нг(A)-LS).

Силовые кабели низкого напряжения предусматриваются с медными жилами, с изоляцией и оболочкой из ПВХ пластиката пониженной пожарной опасности с низким дымо- и газовыделением (с индексом нг(A)-LS).

L								
							Док. №	Лист
							Арх. № 027-ПТ1-П3	42
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	42

Подп. и дата

1нв. № подл.

Для сетей постоянного тока 220 В и рабочего освещения используются кабели с медными жилами, с изоляцией и оболочкой из ПВХ пластиката пониженной пожарной опасности с низким дымо- и газовыделением (с индексом нг(A)-LS).

Для сети аварийного освещения, пожарной сигнализации и устройств пожаротушения используются кабели с медными жилами, огнестойкие, не распространяющие горение, с изоляцией и оболочкой из ПВХ пластиката пониженной пожарной опасности с низким дымо- и газовыделением (с индексом нг(A)-FRLS).

Для цепей управления, защиты, измерения и сигнализации предусматривается использование контрольных кабелей с медными жилами, с изоляцией и оболочкой из поливинилхлорида с низким дымо- и газовыделением (с индексом нг(A)-LS).

Для контрольных цепей предусматривается использование контрольных кабелей с медными жилами (при необходимости экранированных, оптоволоконных и т.д.).

В главном корпусе прокладка кабелей выполняется в оцинкованных кабельных коробах или лотках, а также в кабельном этаже по кабельным конструкциям.

Прокладка кабелей по территории предусматривается в кабельных коробах на кабельных и технологических эстакадах.

1.2.5.7 Компоновка электротехнических устройств

В турбинном отделении проектируемого главного корпуса ЗТО ТКО организовываются следующие помещения:

- РУСН-10,5 кВ;
- РУСН-0,4 кВ ПТУ;
- РУСН-0,4 кВ электроснабжения потребителей ЗТО ТКО;
- ЩПТ;
- аккумуляторной батареи;
- релейных панелей;
- генераторного выключателя.

Систему возбуждения предполагается установить в турбинном отделении, в непосредственной близости от ПТУ.

РУСН-0,4 кВ электроснабжения котлов и очистки дымовых газов размещается в модульных контейнерах(E-houses) и устанавливается в котельном отделении и непосредственной близости от котельного оборудования.

Под помещениями РУСН-10,5 кВ, РУСН-0,4 кВ, РЗА и ПТК, ОЩУ предусматриваются кабельные этажи.

Кабельные этажи оборудуются системами автоматического обнаружения пожара и пожаротушения. В кабельных этажах предусматривается система водяного пожаротушения.

Часть электротехнического оборудования (частотно-регулируемые привода (ЧРП) для дутьевых вентиляторов, дымососов и др.) устанавливаются в модульных контейнерах (E-houses) и размещаются вблизи от технологического оборудования в котельном отделении, отделении очистки дымовых газов, машзале.

Блочный повышающий трансформатор ПТУ, рабочий трансформатор собственных нужд (ТСН) 10,5/10,5 кВ и резервный трансформатор собственных нужд (РТСН) размещаются на площадке открытой установки трансформаторов (ОУТ), расположенной вдоль главного корпуса ЗТО ТКО.

						Док. №	Лист
						Арх. № 027-ПТ1-П3	43
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	43

Подп. и дата

Инв. № подл.

Для каждого трансформатора открытой установки предусматривается маслоприемник с аварийным сливом масла в подземный резервуар. Между трансформаторами устанавливаются огнеупорные перегородки. Автоматические установки пожаротушения трансформаторов не предусматриваются.

1.2.5.8 Открытое распределительное устройство (ОРУ)

К установке предлагается открытое распределительное устройство напряжением (ОРУ)на базе компактного модуля типа КМ ОРУ.

Модули предназначены для приема и распределения электрической энергии трехфазного переменного тока частотой 50 Гц в составе подстанции. Концепция модуля позволяет выполнить ОРУ любой конфигурации, как по типовым, так и по индивидуальным схемам.

Достоинства КМ ОРУ:

- 1. Модули поступают комплектом от одного поставщика.
- 2. Сокращение занимаемой площади, например, в сравнении с площадью стандартной ширине ячейки 110 кВ с шагом 9 м на 35% 40 %.
 - 3. Сокращение времени на монтаж.
 - 4. Сокращение количества фундаментов.
 - 5. Металлоконструкции покрыты методом горячего цинкования.
- 6. Конструкция модуля позволяет использовать оборудование любого производителя.

Уровень напряжения и конфигурация схемы ОРУ определяются решениями работы "Схема выдачи мощности".

1.2.5.9 Система молниезащиты и заземления

Мероприятия по молниезащите зданий и сооружений определяются в соответствии со степенью их взрывопожарной и пожарной опасности.

Выполнение системы заземления и молниезащиты зданий, сооружений и территории предусматривается в соответствии с требованиями действующих нормативных документов.

1.2.5.10 Электроосвещение

Предусматривается освещение зданий и сооружений, прилегающей к ним территории, подъездных дорог.

В зданиях и сооружениях предусматривается выполнение рабочего, аварийного (безопасности и эвакуационного) и ремонтного освещения в соответствии с нормативными документами.

Питание сети освещения предусматривается от тех же трансформаторов собственных нужд, что и питание всех потребителей 0,4 кВ.

Для возможности поддержания напряжения в необходимых пределах питание сети освещения выполняется через стабилизаторы.

В нормальном режиме работы питание сетей рабочего и аварийного освещения предусматривается от разных секций РУСН-0,4 кВ. При отключении рабочего источника питания сеть аварийного освещения автоматически переключается на питание от щита постоянного тока.

Для уменьшения нагрузки на трансформаторы собственных нужд и аккумуляторную батарею освещение предусматривается выполнить с использованием светодиодных осветительных приборов.

						Док. №	Лист
						Apx. № 027-ΠT1-Π3	44
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	44

Инв. № подл.

Управление сетью наружного освещения и светоограждением дымовой трубы осуществляется в автоматическом режиме (с помощью фотореле) с возможностью перевода в режим ручного управления дежурным персоналом.

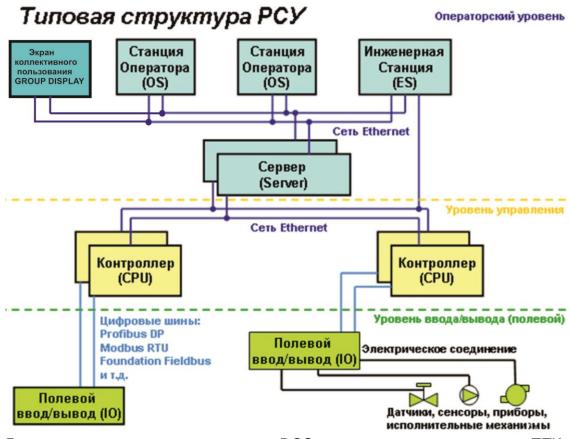
1.2.6 Сети связи, охраны и слежения

Для обеспечения персонала Объекта современными видами связи при решении вопросов диспетчерско-технологического управления, административно-хозяйственной и ремонтной деятельности предусматриваются следующие подсистемы связи:

- · технологическая связь;
- · оперативная связь;
- · двухсторонняя громкоговорящая связь;
- · радиосвязь.

Для обнаружения несанкционированного проникновения на охраняемый объект и подачи тревожного извещения службе охраны для принятия мер по предотвращению несанкционированного проникновения, предусматривается оснащение объекта следующими системами:

- · система охранной сигнализации;
- система контроля и управления доступом;
- · система видеонаблюдения.


1.2.7 АСУ ТП

Автоматизированная система управления технологических процессов (АСУ ТП) разрабатывается как распределительная систем управления (РСУ или в английском варианте DCS –система) состоящая из трех уровней:

- 1. Полевого уровня (датчики, сенсоры, исполнительные механизмы), которые с помощью электрических кабелей подключаются к подсистеме полевого ввода/вывода (модулям устройства связи с объектом (УСО)). Электрический сигнал, поступающий с датчика, в модуле УСО интерпретируется как измерение определенной физической величины и, в дальнейшем, оцифровывается и передается на уровень управления.
- 2. Уровня управления (контроллерный уровень), на котором контроллеры обрабатывают поступающую от модулей УСО информацию и выдают обратно управляющее воздействие исполнительным механизмам полевого уровня. Эта обработка осуществляется в соответствие с заложенными алгоритмами управления и происходит циклически, в среднем 10-20 раз в секунду. Для решения сложных задач контроллеры могут обмениваться между собой данными, используя цифровые коммуникационные сети (Industrial Ethernet).
- 3. Операторский уровень это уровень операторского управления, объединяющий серверы и операторские рабочие станции. Серверы поддерживают коммуникацию с подключенными к нему контроллерами и ведут архив технологических параметров эксплуатируемого оборудования. Операторские станции APM (автоматизированное рабочее место) представляют собой промышленные персональные компьютеры, которые в рамках клиент-серверной архитектуры ведут обмен данными с серверами. Операторская станция служит для отображения технологической информации в виде интерактивных графических мнемосхем, а также для эффективного управления процессом. На мнемосхемах, отображаемых на APM, показывается исчерпывающая информация: параметры

						Док. № Арх. № 027-ПТ1-ПЗ	Лист 45
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	43

ввода/вывода, значения процессных переменных, аварийные сигналы, результаты диагностики аппаратных модулей системы, графики, отчеты и т.д. Информация о состоянии оборудования технологического процесса сжигания мусора выводится и пользования. Экран коллективного коллективного пользования предназначен для отображения крупномасштабной обобщающей мнемосхемы завода по термическому обезвреживанию твердых коммунальных отходов в online-режиме. Применение экрана коллективного пользования позволяет повысить эффективность и надежность всей DCS-системы управления, быстро реагировать на нештатные ситуации, рассматривая локальную проблему на фоне восприятия комплексной информации работы завода. Инженерная станция ES (engineering station) предназначена для внесения изменений и дополнений в конфигурацию DCS-системы. На ней устанавливаются соответствующие программные средства разработки, с помощью которых технический специалист может централизованно вносить изменения и дополнения в конфигурацию системы. Инженерную станцию, как правило, дополняют расширенными средствами диагностики состояния системы. В отличии от АРМов, инженерная станция имеет прямое подключение к уровню управления (контроллерам).

Реализация принципов построения DCS-системы осуществляется в ПТК АСУ ТП (программно-техническом комплексе автоматизированной системы управления технологическим процессом). В ПТК АСУ ТП обеспечивается реализация управления оборудованием завода, контроль за технологическими параметрами посредством штатного КИП, организация автоматического регулирования. направленного на поддержание технологических параметров энергетического оборудования на требуемом уровне. Управление основным оборудованием завода по термическому обезвреживанию твердых коммунальных отходов организуется с объединенного щита управления (ОЩУ), расположенного в здании главного технологической необходимости, корпуса. При возникновении имеется возможность управления основным и вспомогательным оборудованием завода

							Док. №
I							Арх. № 027-ПТ1-ПЗ
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

읟

ИНВ.

Взам.

Подп. и дата

№ подл.

посредством ЛСАУ комплектной поставки, при соответствующем разрешении оператора ОЩУ. Управление оборудованием с ОЩУ имеет приоритет относительно управления с ЛСАУ или управления по месту.

Все задачи по контролю и управлению (пуск, останов, нормальное функционирование и изменение нагрузки) выполняются в ПТК АСУ ТП посредством устанавливаемых на ОЩУ АРМ с помощью манипулятора «мышь» и (или) клавиатуры. АРМ обеспечивает единообразие выполнения операций по управлению объектами всех уровней. Индивидуальное управление исполнительными устройствами осуществляется дистанционными или местными ключами в минимальном объеме в случае аварийного управления оборудованием. Аварийный останов осуществляется с ОЩУ посредством коммутирующих устройств - ключей и кнопок пульта аварийного останова, воздействующих на исполнительные механизмы, обеспечивающие останов оборудования завода помимо управляющего воздействия ПТК АСУ ТП. Элементы и устройства энергетического оборудования, не оснащенные ЛСАУ и не имеющие комплектно контрольно-измерительных приборов, оснащаются поставляемых КИП соответствии с действующей нормативной документацией в РФ. АСКУЭ (автоматизированная система коммерческого учета энергоресурсов) реализуется автономно в соответствии с техническими условиями энерго- и ресурсоснабжающих организаций, с возможностью передачи информации в ПТК АСУ ТП для выполнения необходимого объема математических вычислений и обеспечения архивации необходимых параметров систем учета энергоресурсов на архивных станциях ПТК АСУ ТП.

1.2.8 Водоподготовительная установка

Назначением водоподготовительной установки (ВПУ) является:

- приготовление добавочной воды для восполнения потерь пара и конденсата паросилового цикла котлов, с учетом потребности в обессоленной воде для приготовления раствора мочевины (карбамида);
 - приготовление добавочной воды для подпитки теплосети;
 - поддержание водно-химического режима (BXP) котлов.

Водоподготовительная установка состоит из:

- установки подготовки добавочной воды для подпитки цикла котлов;
- установки подготовки воды для подпитки теплосети;
- установки коррекционной обработки питательной и котловой воды;
- установки сбора и усреднения стоков ВПУ;
- отделения химреагентов;

Взам. инв. №

Подп. и дата

Инв. № подл.

аналитической лаборатории.

В соответствии с п.4.2.2 СТО 70238424.27.100.013-2009 «Водоподготовительные установки и водно-химический режим ТЭС» качество добавочной воды для подпитки котлов после последней ступени обработки должно удовлетворять следующим требованиям:

удельная электрическая проводимость –
 содержание кремниевой кислоты –
 содержание соединений натрия –
 содержание общего органического углерода (ТОС) – ≤300 мкг/дм³;

жесткость общая (Жо) – отсутствие.

В соответствии с CO 153-34.20.501-2003 «Правила технической эксплуатации электрических станций и сетей РФ» п.4.8.39 качество подпиточной воды тепловых

						Док. №	Лист
						Арх. № 027-ПТ1-П3	47
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	47

≤1 мг/дм³;

содержание свободной угольной кислоты – 0 мг/дм³;
 значение рН – 8,3-9,5;
 содержание растворенного кислорода – ≤50 мкг/дм³;
 количество взвешенных веществ – ≤5 мг/дм³;

нормативный карбонатный индекс – 1,4-2,1 (мг-экв/дм³)².

В качестве исходной воды для ВПУ используется техническая вода из резервуаров противопожарного запаса воды, предварительно подогретая до температуры +20...+25 °C в главном корпусе. Схема ВПУ основана на малореагентных баромембранных технологиях обработки воды в комбинировании с ионным обменом:

- фильтрация исходной воды на фильтре самопромывном (дисковом);
- обработка воды на фильтрах, загруженных активированным углем;
- умягчение на Na –катионитных фильтрах;

содержание нефтепродуктов –

- деминерализация Na-катионированной воды на установке обратного осмоса с последующей дегазацией;
- подача деминерализованной воды с корректировкой значения рН на подпитку теплосети;
- обессоливание деминерализованной воды на установке электродеионизации;
- глубокое обессоливание на фильтрах ионитных смешанного действия для подпитки цикла котлов

Принципиальная технологическая схема ВПУ представлена на чертеже 027-ПТ1-ВП1.

Расчетная производительность установки подготовки добавочной воды для подпитки цикла котлов принята равной 3 % от суммарной номинальной паропроизводительности котлов плюс восполнение потерь с продувкой котлов (не более 1% и не менее 0,5% производительности котлов), с учетом использования обессоленной воды на станции приготовления раствора мочевины (карбамида), и с учетом запаса по производительности ВПУ - 20 %. Расчетная производительность установки — 11 м³/ч.

Расчетная производительность установки подготовки воды для подпитки теплосети – 1,1 м³/ч.

Сточные промывочные воды и минерализованные воды от мембранных установок и регенерации ионитных фильтров собираются в подземном железобетонном баке-усреднителе, откуда погружными насосами откачиваются в баки «зольной воды» и далее на утилизацию.

Для хранения, приготовления и дозирования растворов химических реагентов предусмотрено отделение химреагентов. Доставка реагентов осуществляется автомобильным транспортом.

ВПУ размещается в пристройке к турбинному отделению главного корпуса.

Водно-химический режим паросилового цикла

Для предотвращения образования отложений в паровом тракте, наряду с глубоким обессоливанием добавочной воды и поддержанием оптимальных эксплуатационных норм качества котловой воды путем непрерывной продувки, предусматривается:

L								
							Док. №	Лист
							Арх. № 027-ПТ1-П3	48
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	40

№ подл.

- коррекционная обработка питательной воды раствором аммиака с повышением рН воды до значения 9,1±0,1 для предотвращения углекислотной коррозии оборудования конденсатно-питательного тракта;
- организация фосфатирования котловой воды с подачей фосфатного раствора и раствора едкого натра (при необходимости) в барабан котла.

Химический контроль

Для проведения периодического и оперативного химического контроля воднохимического режима и работой ВПУ предусматривается экспресс-лаборатория.

Определение показателей качества среды осуществляется с помощью следующих видов контроля:

- автоматического непрерывного химического контроля регулируемых показателей качества теплоносителя (электрической проводимости (æ) и электрической проводимости Н-катионированной пробы (æн), значения рН, содержания кислорода (O₂) и натрия (Na));
- ручного периодического химического контроля в помещении аналитической лаборатории.

Химическая очистка оборудования

Вновь вводимые в эксплуатацию котлы после монтажа подвергаются предпусковой очистке и консервации. Предпусковые и эксплуатационные очистки выполняются по программам, разработанным специализированной организацией. Емкостное и насосное оборудование для приготовления и подачи растворов для химической очистки размещается в главном корпусе.

1.2.9 Архитектурные решения

Обоснование принятых объемно-пространственных и архитектурно-художественных решений

На площадке завода по термическому обезвреживанию твёрдых коммунальных отходов мощностью 550 000 тонн ТКО в год запроектирован комплекс зданий и сооружений в соответствии со схемой планировочной организации земельного участка, разработанной на основании задания на проектирование, с учетом требований технологического процесса и в соответствии с действующими нормативными документами.

В основе объёмно-пространственных и архитектурно-художественных решений всех зданий завода заложены принципы функционального построения. Объёмно-пространственная композиция решена на сочетании зданий и сооружений различного объёма и назначения, связанных общим технологическим процессом.

Основные геометрические параметры зданий обусловлены технологическими особенностями производства.

Основным, доминирующим зданием на территории завода является здание главного корпуса.

Архитектурная выразительность главного корпуса достигается блокировкой объемов разной высоты и сочетанием разнофактурных поверхностей стенового

						Док. №	Лист
						Арх. № 027-ПТ1-П3	49
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	49

нв. № подл. П

ограждения с акцентированием и выделением цветом отдельных объемов, участков и элементов стен.

Цветовое решение всех зданий и сооружений комплекса предусматривает использование основных корпоративных цветов Управляющей компании. Одним из вариантов может быть использование определяющих «экологических» цветов – зеленого (RAL 6017, 6024), белого (RAL 9010), серого (RAL 7038), а также акцентирующих контрастных цветов – желтого (RAL 1033), оранжевого (RAL 2010).

Основным акцентирующим элементом архитектурной композиции главного корпуса является многоэтажная пристройка для размещения ОЩУ и административно-бытовых помещений, с прилегающей к ней пригласительной благоустроенной зоной, что достигается за счет использования отличных фактур материалов отделки и цвета. Фасад административно-бытовых помещений с большими остеклёнными поверхностями и поверхностями, облицованными алюминиевыми композитными панелями Alucobond, с учетом контрастного цветового решения, будет выигрышно смотреться на фоне белых, серых и зелёных массивных плоскостей фасадов главного корпуса.

Описание архитектурных решений, обеспечивающих естественное освещение помещений с постоянным пребыванием людей

Естественное освещение производственных помещений с постоянным пребыванием персонала решено через световые проемы в наружных стенах. В соответствии с технологическим заданием при разряде зрительных работ IV и V, т.е. средней и малой точности нормируемый коэффициент естественной освещенности обеспечивается принятой комбинированной системой освещения.

Принятые световые проёмы используются для естественного освещения помещений, для естественного проветривания помещений и для дымоудаления. Принятое естественное освещение обеспечивает комфортное пребывание людей в зданиях.

Описание архитектурно-строительных мероприятий, обеспечивающих защиту помещений от шума, вибрации и другого воздействия.

Классификация шума, общие требования безопасности и предельно допустимые уровни шума на рабочих местах устанавливаются с учетом тяжести и напряженности трудовой деятельности в соответствии с санитарными нормами СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых и общественных зданиях и на территории жилой застройки», СП 51.13330.2011 «Защита от шума». Актуализированная редакция СНиП 23-03-2003.

Проектом предусмотрен комплекс архитектурно-строительных мероприятий по борьбе с шумом и вибрацией, источником которых является технологическое и инженерное оборудование зданий - паровые турбины, генераторы, котлы, воздухозаборное, вентиляционное, компрессорное и насосное оборудование и др.

Фундаменты турбогенераторов отделены от фундаментов каркаса здания. Верхняя часть фундаментов отделена от примыкающих перекрытий и площадок деформационными швами.

Для снижения уровня шума от работающего технологического оборудования предусмотрены планировочные и конструктивные строительные мероприятия общего характера — шумное оборудование размещается на виброопорах и в отдельных помещениях с устройством разделительных стен и перегородок из материалов и конструкций, обеспечивающих смежные помещения требуемым

N	иатер	иало	в и	констру	кций,	обеспечивающих	смежные	помещения	требуемы	ЫM
						Док. №				Лист
						Apx. № 027-ПТ1-ПЗ				50
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:				50

Инв. № подл. Пс

уровнем защиты от шума. Стены и потолки вентиляционных камер облицованы звукопоглощающими материалами.

При входах в смежные помещения с постоянным пребыванием персонала предусмотрены тамбуры.

В помещениях щитов управления, операторских, лабораториях, комнатах отдыха и приема пищи, в вестибюлях, холлах и коридорах, предусматривается устройство подвесных звукопоглощающих потолков. Перегородки и полы указанных помещений запроектированы с применением звукоизоляционных материалов.

Предусмотрены мероприятия по шумозащите помещений с постоянным пребыванием персонала, включающие применение эффективных ограждающих стеновых конструкций, оконного заполнения с тройным остеклением, звукоизолирующих дверей.

Внедрение предусмотренного проектом комплекса мероприятий по снижению шума от оборудования и трубопроводов обеспечит соблюдение установленных нормативов уровня шума на рабочих местах в зданиях, на территории промплощадки и за ее пределами.

Размещение административно-бытовых помещений

В соответствии со штатным расписанием, определяющим численность АУП, производственного персонала оперативного, сменного И предприятия, предусмотрены административные, инженерно-технические, служебные и бытовые помещения, размещаемые в многоэтажном блоке ОЩУ и административнобытовых помещений. В состав административных, инженерно-технических и бытовых помещений входят кабинеты, зал совещаний, комната отдыха, санитарнобытовые гардеробные помещения, медицинский пункт и столовая-раздаточная на мест. В санитарно-бытовых помещениях посадочных предусмотрены гардеробные, душевые, умывальные, уборные.

В производственных и вспомогательных зданиях, где находится постоянный персонал, запроектированы санузлы, размещаемые на отметках первого этажа и на отметках, имеющих постоянные рабочие места сменного и оперативного персонала.

Питание персонала предполагается в 2 смены в столовой-раздаточной на 20 посадочных мест, располагаемой в блоке ОЩУ и административно-бытовых помещений. Доставку готовых блюд (продукции) для разогрева и раздачи предполагается производить с базовых столовых, работающих на сырье или полуфабрикатах, и расположенных в пределах оптимальной транспортной доступности.

Описание решений по светоограждению объекта

Дневная маркировка и светоограждение выполняется согласно указаниям Федеральных авиационных правил «Требования, предъявляемые к аэродромам, предназначенным для взлета, посадки, руления и стоянки гражданских воздушных судов» от 25.08.2015

Дневная маркировка и светоограждение на территории проектируемого завода предусмотрены для дымовой трубы высотой 98 м (ориентировочно).

Дневная маркировка имеет два отличающихся друг от друга маркировочных цвета (красный и белый) для отчетливого выделения на фоне местности.

						Док. №	Лист
						Apx. № 027-ΠΤ1-Π3	51
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	31

Инв. № подл. По,

Дымовая труба маркируется от верхней точки на 36м высоты горизонтальными, чередующимися по цвету, полосами шириной 4,0 м. Число чередующих полос - 9.

Крайние полосы окрашиваются в красный цвет.

Для светового ограждения используются заградительные огни, размещаемые ниже обреза трубы на 1,5 м. Для обслуживания заградительных огней по периметру трубы предусматривается площадка.

1.2.10 Конструктивные и объемно-планировочные решения

Описание и обоснование принятых объемно-планировочных решений зданий и сооружений

Объёмно-планировочные решения комплекса зданий завода обусловлены технологией производства, решениями базового проекта (разработанного компанией HZI), площадью участка выделенного под строительство.

В основу объемно-планировочных и конструктивных решений зданий и сооружений положены принципы блокировки с целью максимального сокращения протяженности технологических коммуникаций и производственных связей между зданиями и сооружениями, функционального расположения зданий и сооружений.

Номенклатура, компоновка и площади помещений основного, вспомогательного и обслуживающего назначения продиктованы технологическими процессами с учётом требований нормативных документов в области промышленной и пожарной безопасности.

Компоновочные решения главного корпуса, производственных зданий вспомогательного назначения завода обеспечивают доступ для обслуживания оборудования, механизацию ремонтных и монтажных работ, соблюдение правил противопожарной безопасности и требований норм безопасности труда.

Главный корпус

Категория здания по взрывной и пожарной опасности – В.

Степень огнестойкости здания – II.

Класс конструктивной пожарной опасности – С0.

Класс функциональной пожарной опасности - Ф5.1.

Площадь застройки главного корпуса – 17160 м2.

Общий строительный объем главного корпуса -616370 м3.

Для размещения основного и вспомогательного оборудования завода предусматривается строительство здания главного корпуса. Здание одноэтажное, сложной конфигурации в плане, сблокировано из объемов разной высоты. Объемно-планировочные решения определены исходя из функциональных связей и технологических компоновок основного и вспомогательного оборудования.

Главный корпус состоит из следующих отделений (блоков):

- зона разгрузки отходов (отвальный пролёт);
- бункер отходов (приемный);
- котельное отделение;
- отделение очистки дымовых газов;
- турбинное отделение;
- блок электротехнических помещений;
- блок помещений ВПУ со складом реагентов;
- общезаводская компрессорная;

						Док. №	Лист
				·		 Арх. № 027-ПТ1-П3	52
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	52

№ подл.

- блок ОЩУ и административно-бытовых помещений;
- блок складских помещений и мастерских;
- отделение шлакоудаления с участком хранения и транспортировки золы.

Зона разгрузки отходов (отвальный пролёт)

Предназначена для въезда мусоровозов и обеспечения разгрузки мусоровозов в приемный бункер.

Зона разгрузки отходов размещается возле бункера отходов осях, габаритами 30,0 x 75,4 м, высота до низа ферм покрытия - 12,6 м;

Для въезда и выезда мусоровозов предусмотрены ворота размером 4,2 м x 6м. Для выгрузки ТКО в бункер предусмотрено 7 проёмов размером 4м x 10м, оборудованных подъёмными воротами. Ширина зоны разгрузки обеспечивает возможность маневрирования крупногабаритных мусоровозов.

Бункер приемки отходов (приемный)

Бункер отходов предназначен для приёма и хранения ТКО.

Бункер приемки отходов запроектирован габаритами 26,1 х 57,4 м, высота до низа ферм покрытия - 38,20 м. Отметка днища бункера: - 8,00 м.

Бункер оборудован 2-мя грейферными кранами. По длинной стороне бункера, со стороны котельного отделения на отметке +23,000 предусмотрена площадка с двумя загрузочными воронками котлов. По торцевым сторонам бункера в осях предусмотрены опускные шахты и площадки на отм.0,00 для ремонта и обслуживания ковшей грейферных кранов.

Котельное отделение

Котельное отделение оборудовано 2-мя котлами и вспомогательным котельным оборудованием. Котельное отделение запроектировано габаритами 45,0 x 60,0 м, высота до низа ферм покрытия - 54,1 м.

К котельному отделению примыкают лестнично-лифтовые блоки с выходами на площадки котла, отметки блока ОЩУ и административно-бытовых помещений, на площадки турбинного и деаэраторного отделений, с выходом на кровлю для обеспечения деятельности пожарных подразделений.

Отделение очистки дымовых газов

Отделение очистки дымовых газов примыкает к котельному отделению, габаритами 39,0 x 60,0 м, высота до низа ферм покрытия - 23,4 м. В отделении предусматривается установка оборудования систем очистки дымовых газов котлов.

Турбинное отделение

Турбинное отделение габаритами 30,0 х 72,0 м, высота до низа ферм покрытия - 28,8 м.

Между турбинным и котельным отделениями запроектирована деаэраторная этажерка габаритами 12,0 х 72,0 м, с перекрытиями на отм.+4,000, +9,000, +15,100, +22,000, высота до низа балок покрытия — 31,0 м. В турбинном отделении размещаются паротурбинная установка, вспомогательное технологическое и баковое оборудование, ИТП и пожарная насосная ВД.

			1 3	,		p	
						Док. №	Лист
						Apx. № 027-ΠT1-Π3	53
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	55

Подп. и дата

1нв. № подл.

В пристройке к турбинному отделению размещается блок электротехнических помещений габаритами 12,0 х 51,0 м с отметками 0,000, +3,300, +7,800, +11,100, блок помещений ВПУ габаритами 12,0 х 21,0 м с отметками 0,000, +7,800, общестанционная компрессорная габаритами 15,0 х 12,0 м с отметками 0,000, +10,000, высота до низа балок покрытия — 15,0 м. Для связи между отметками запроектирована лестница типа Л1 между блоком электротехнических помещений и блоком помещений ВПУ.

Блок ОЩУ и административно-бытовых помещений.

Блок ОЩУ и административно-бытовых помещений — шестиэтажная пристройка к котельному отделению и бункеру приемки отходов габаритами 26,7 х 35,92 м, с отметками этажей 0,000, +4,800, +8,400, +11,700, +15,300, +18,000, высота до низа плит покрытия- 22,0 м. На отм. 0,000 размещается столовая-раздаточная и складские помещения, на отм.+4,800 — административные помещения завода, на отм+8,400 и +11,700 административные, служебные и гардеробные помещения, на отм.+ 15,300 — технический этаж с кабельными помещениями, на отм.+18,000 — помещение ОЩУ и помещение крановщика, а так же помещения ЭТАИ.

Для связи между отметками запроектирован лестнично-лифтовой блок.

Блок складских помещений и мастерских.

По торцу блока ОЩУ и административно-бытовых помещений расположена двухэтажная пристройка, которая примыкает к зоне разгрузки и бункеру отходов, габаритами 18,7 х 18,9 м, высота до балки покрытия - 12,4 м. На отм.0,000 расположены склад и мастерская, на отм.+8,400 — помещение для вентиляционного оборудования.

Отделение шлакоудаления с участоком хранения и транспортировки золы

Отделение шлакоудаления с участком хранения и транспортировки золы примыкает к котельному отделению и отделению очистки дымовых газов, габаритами 25,6 x 60,0 м, высота до низа балок покрытия - 17,47 м.

В двухэтажной пристройке к отделению шлакоудаления с участком хранения и транспортировки золы габаритами 15,0 х 15,0 м, на отм.0,000 расположены помещения по обслуживанию дизельных погрузчиков и склад масла в таре, на отм.+6,000 помещение для вентиляционного оборудования.

Каркас главного корпуса — металлический, рамно-связевой, с вертикальными связями и системой распорок в продольном направлении. Шаг колонн в продольном направлении переменный 6,0 м, 9,0 м и 12,0 м.

Колонны каркаса – сварные, составного сечения и прокатные. Закрепление колонн к фундаментам – жесткое.

Покрытия отделений каркаса предусматриваются с использованием двускатных металлических стропильных ферм.

Док. № Док. № Арх. № 027-ПТ1-ПЗ Изм. Кол.уч Лист № док. Подп. Дата Файл:								
							Док. №	Лист
Изм. Кол.уч Лист № док. Подп. Дата Файл:							Арх. № 027-ПТ1-П3	ΕΛ
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	54

Инв. № подл. П

Для обслуживания технологического оборудования предусматриваются металлические площадки с лестницами.

В отделении бункера отходов и отделении шлакоудалении предусмотрена установка мостовых грейферных кранов, по два в каждом отделении, в турбинном отделении – мостового крана грузоподъемностью 20,0 т.

В деаэраторной этажерке турбинного отделения предусмотрена установка кран-балок различной грузоподъемности.

Каркас блока ОЩУ и административно-бытовых помещений, перекрытия, покрытие предусмотрены монолитными железобетонными. Материал наружные и внутренних стен — керамзитобетонные стеновые блоки, кирпич, листы ГВЛ по металлическому каркасу. Шаг колонн 6,0х6,0 м и переменный.

Лестнично-лифтовые блоки – монолитные железобетонные.

Фундаменты каркаса главного корпуса (зона разгрузки отходов, котельное отделение, отделение очистки дымовых газов, турбинное отделение, отделение ВПУ со складом реагентов и мастерскими, блок электротехнических помещений, отделение шлакоудаления, блока ОЩУ и административно-бытовых помещений предполагаются монолитные железобетонные на свайном или естественном основаниях, в зависимости от инженерно-геологических условий.

Приемный бункер отходов — массивное емкостное заглубленное монолитное сооружение с контрфорсами, отметка низа минус 8,000.

Фундаменты под основное технологическое оборудование (турбоагрегат, котлы) - монолитные железобетонные на свайном или естественном основаниях, в зависимости от инженерно-геологических условий.

Подземное хозяйство главного корпуса предполагает устройство монолитных железобетонных силовых плит на естественном основании по обратной засыпке фундаментов каркаса и подземной части, а также монолитных железобетонных приямков и каналов.

Перекрытия блока электротехнических помещений – монолитные железобетонные в несъемной опалубке из профилированного листа по металлической балочной клетке.

Дымовая труба

В составе дымовой трубы предусматривается два газоотводящих ствола индивидуального изготовления из стеклопластика, расположенных в несущей монолитной железобетонной оболочке. Диаметры и высота газоотводящих стволов и железобетонной вытяжной башни определяются на стадии ПД после проведения экологических расчетов.

Фундамент вытяжной башни предполагается монолитный железобетонный на свайном или естественном основаниях, в зависимости от инженерно-геологических условий.

Вспомогательные здания и сооружения

Габариты и компоновка всех производственных зданий и сооружений определяются компоновками технологического оборудования и назначаются на основании технологических заданий.

						Док. №	Лист
						 Арх. № 027-ПТ1-П3	E E
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	55

№ подл.

Каркасы вспомогательных зданий - металлические, рамно-связевые. Колонны, ригели и балки покрытия – прокатного сечения.

Фундаменты вспомогательных зданий и сооружений предполагаются монолитные железобетонные на свайном или естественном основаниях, в зависимости от инженерно-геологических условий.

Фундаменты сооружений контейнерного типа полной заводской готовности – монолитные железобетонные плиты на послойно уплотненной подушке из щебня.

Заглубленные и емкостные сооружения (заглубленная часть насосной станции противопожарного и хозяйственно-питьевого водоснабжения, резервуары питьевой воды, резервуары противопожарного запаса воды, баки аварийного слива турбинного и трансформаторного масла, емкости очистных сооружений и др.) предполагаются из монолитного железобетона на естественном основании.

Насосная станция пожаротушения и хозяйственно-питьевого водоснабжения

Категория здания по взрывной и пожарной опасности - Д.

Степень огнестойкости здания – І.

Класс конструктивной пожарной опасности – С0.

Класс функциональной пожарной опасности – Ф5.1

Насосная станция противопожарного и хозяйственно-питьевого водоснабжения – отдельно стоящее одноэтажное здание, предназначено для размещения насосов противопожарного и хозяйственно-питьевого водоснабжения.

Размер в здания плане в осях 12х12 м, высота до низа балок покрытия - 6,4 м. Габариты здания будут уточнены на основании технологического задания.

Главная проходная

Степень огнестойкости здания - ІІ

Класс конструктивной пожарной опасности – С0.

Класс функциональной пожарной опасности – Ф4.3

Здание главной проходной расположено рядом с отдельным автомобильным въездом на промплощадку. Здание предназначено для осуществления контроля за проходом персонала и проездом автотранспорта на территорию завода.

Габариты здания в осях 13,8х6,12 м, будут уточнены с учетом технических условий (ТУ) Заказчика на охранные мероприятия. Высота здания до низа конструкций покрытия - 3,6 м.

Объёмно-планировочные решения проходной определяются функциональным назначением здания, составом и перечнем помещений, размещаемых в здании согласно требований ТУ. В здании предполагается размещение следующих помещений: вестибюль оборудованный турникетом, пост охраны, бюро пропусков, комната досмотра, комната охраны, комната отдыха и санузел.

Здание предполагается с кирпичными несущими стенами с утеплением и облицовкой металлическими кассетами по системе «Вентфасад». Покрытие - из сборных железобетонных плит с эффективным утеплителем и рулонной кровлей.

Грузовая проходная с весовой

Здание весовой совмещено со зданием грузовой проходной. Здание размещено на въезде грузового транспорта и предназначено для осуществления

							Док. №	Лист
							 Арх. № 027-ПТ1-П3	56
Из	м.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	56

Подп. и дата

Инв. № подл. Подг

контроля за въездом и выездом с территории завода грузовых автомобилей и мусоровозов.

Степень огнестойкости здания - II

Класс конструктивной пожарной опасности – С0.

Класс функциональной пожарной опасности – Ф4.3

Габариты здания в осях 13,08х4,32 м, высота до низа конструкций покрытия - 3,0 м. В здании располагаются помещения поста охраны, помещение весовой, комната отдыха, санузлы для персонала и водителей.

С обеих сторон здания размещены платформенные весы для взвешивания въезжающих и выезжающих транспортных средств: 3 установки платформенных весов для взвешивания въезжающих на площадку и 2 установки для взвешивания автотранспорта при выезде с площадки. Для защиты весов от атмосферных осадков над ними предусмотрен навес. На выезде с каждых платформенных весов установлены шлагбаумы, на въезде и выезде — светофоры, регулирующие въезд/выезд грузовиков. На въезде перед платформенными весами устанавливается система обнаружения радиоактивного излучения. Кроме того, запроектированы два дополнительных (въездной и выездной) пути объезда для транспортных средств, не подлежащих взвешиванию.

Эстакады технологических трубопроводов и кабельных линий

Прокладка технологических трубопроводов и кабельных линий осуществляется проектируемым эстакадам и отдельно стоящим опорам.

Проектируемые эстакады представляют собой одноярусные металлические опоры, соединенные между собой балками пролетного строения с траверсами. Шаг траверс принимается, исходя из условий опирания технологических трубопроводов.

Для обеспечения жесткости и устойчивости эстакад на каждом участке выполняются анкерные (связевые) опоры и устанавливаются вертикальные связи.

Для обслуживания трубопроводов выполняются металлические лестницы, площадки и переходные мостики.

Фундаменты металлических стоек эстакад, в зависимости от инженерногеологических условий площадки и расчетных нагрузок, монолитные железобетонные столбчатые на свайном или естественном основаниях.

Ограждение

На площадке предусматривается наружное ограждение из сборных ж-б панелей (толщиной 100мм). По верху и низу основного ограждения устраивается дополнительное ограждение (нижнее – противоподкопное и верхнее - типа "Егоза").

Материалы

Взам. инв. №

Подп. и дата

Инв. № подл.

Бетон по ГОСТ 26633-2015 классов:

- для фундаментов зданий, сооружений и фундаментов эстакад B25, B15, W6, F150, F200:
 - для фундаментов ПТУ и котлов-утилизаторов B30, B25, W6, B15, F150;
 - для подземных и заглубленных сооружений B30, B25, W8, W6, B15, F150;
 - для остальных конструкций B15, B12,5;
 - для подготовок и подбетонок B7,5;
 - арматура классов А400, А240 по ГОСТ 5781-82*.

		aμ	ma i y	ла класс	OB A	400, A240 110 1 OC1 3701-02 .	
						Док. №	Лист
						Арх. № 027-ПТ1-П3	57
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	37

Сталь для изготовления металлоконструкций — С245, С255, С345 по ГОСТ 27772-2015.

Конструктивные решения кровли, наружных и внутренних стен и перегородок, полов, окон и витражей, дверей и ворот

Наружные стены главного корпуса и вспомогательных производственных зданий — трехслойные металлические стеновые панели типа «Сэндвич» с антикоррозионно-декоративным покрытием и негорючим утеплителем из минеральной ваты на основе базальтового волокна.

Лестнично-лифтовые блоки главного корпуса – монолитный железобетон.

Цокольная часть наружных стен - из кладочного материала с утеплением по системе «вентфасад» с облицовкой металлическими фасадными кассетами или керамогранитом.

Конструкция кровли – из современных рулонных битумно-полимерных материалов по минераловатному утеплителю, и из трехслойных металлических кровельных панелей типа «сэндвич».

Внутренние стены и перегородки, в зависимости от назначения, предусмотрены из трехслойных металлических стеновых панелей типа «сэндвич», из кладочного материала (кирпича, керамзитобетонных блоков) и из листов ГВЛ (ГВВЛ) по металлическому каркасу. Стены и перегородки санузлов и душевых – из полнотелого керамического кирпича.

Покрытия полов приняты в зависимости от технологических процессов в помещениях – бетонные, наливные и полимерцементные, промышленные полы типа «альфапол», из кислотоупорной и керамической плитки, антистатического линолеума.

Окна и витражи главного корпуса предусмотрены из алюминиевого профиля с остеклением стеклопакетами и одинарным остеклением. Окна вспомогательных зданий, из алюминиевого профиля и из поливинилхлоридных профилей с остеклением стеклопакетами.

Наружные двери - из стальных профилей, утепленные. Внутренние двери - из алюминиевых и поливинилхлоридных профилей, металлические противопожарные. Ворота предусмотрены стальные, утепленные подъемносекционные.

Проектные решения и мероприятия, обеспечивающие пожарную безопасность

Противопожарные мероприятия

Объемно-планировочные решения проектируемых зданий соответствуют действующим нормам и правилам в части взрыво- и пожаробезопасности.

Эвакуационные выходы из зданий и помещений, а также выходы на кровлю и пожарные лестницы запроектированы согласно действующим нормам. На всех перепадах высот кровли выше 1м предусмотрены металлические лестницы.

Для обеспечения требуемых степеней огнестойкости проектируемых зданий предусматривается огнезащита металлоконструкций каркасов. Для огнезащитного покрытия стальных конструкций предусматриваются материалы конструктивной и окрасочной огнезащиты, имеющие длительные сроки службы.

Строительные конструкции и материалы имеют требуемый нормами предел огнестойкости и показатели по пожарной опасности.

Подп. и да	
Инв. № подл.	

Взам. инв. №

							027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	

Мероприятия по защите строительных конструкций и фундаментов от разрушения

Для защиты строительных конструкций и фундаментов от разрушения предусматривается антикоррозионная защита всех железобетонных конструкций, металлоконструкций, закладных и монтажных деталей согласно требованиям действующих нормативных документов.

Поверхности железобетонных конструкций, соприкасающиеся с грунтом, покрываются современными гидроизолирующими битумно-полимерными мастиками. Подземные емкостные сооружения выполняются из бетона с добавкой "Пенетрон-Адмикс" (ТУ 5745-001-77921756-2006).

Антикоррозионная защита закладных и соединительных элементов в стыках несущих и ограждающих железобетонных конструкций выполняется методом цинкования или холодного нанесения цинкосодержащих покрытий.

Антикоррозионная защита стальных конструкций выполняется лакокрасочными покрытиями.

1.2.11 Системы водоснабжения и водоотведения

Источником системы хозяйственно-питьевого и производственнопротивопожарного водоснабжения проектируемого объекта является хозяйственно-питьевой и противопожарный водопровод ПАО «Казаньоргсинтез» DN355 мм (Приложение 1) с гарантированным напором в месте подключения 0.25МПа.

Ориентировочно, расстояние от точки подключения к хозяйственно-питьевому и производственно-противопожарному водопроводу ПАО «Казаньоргсинтез» до площадки Объекта составляет 3,06км.

Для обеспечения надежности водоснабжения в соответствии требованиями ПАО «Казаньоргсинтез» (Приложение 1) необходимо выполнить перекладку двух участков водопровода (0,53 км и 0,34 км) на больший диаметр, и прокладку дополнительного участка водовода 0,65 км DN315мм.

В соответствии с ТЗ на проектирование разработка проектной и рабочей документации по внеплощадочным сетям и сооружениям водоснабжения выполняется по отдельному проекту.

Подача воды на площадку предусматривается по одному трубопроводу (Требует согласования Заказчика).

Категория источника водоснабжения проектируемого объекта по совокупности критериев (водовод в одну нитку) по степени обеспеченности подачи воды рассматривается как III категория.

На проектируемой площадке завода предусматриваются следующие системы водоснабжения:

- система хозяйственно-питьевого водоснабжения.
- система производственно-противопожарного водопровода.
 Принципиальная схема водоснабжения объекта приведена на чертеже

Система хозяйственно-питьевого водопровода

027-ПТ1-ГР1 л.1

Расход воды на хозяйственно-питьевые нужды завода составляет 2,48 м³/ч, 33,23 м³/сут (уточняется в ПД).

L								
							Док. №	Лист
							 Арх. № 027-ПТ1-П3	59
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	59

В. № подл.

В состав сооружений системы хозяйственно-питьевого водоснабжения проектируемого объекта входят:

- два подземных полимерных резервуара запаса питьевой воды (2х20 м³);
- насосы питьевой воды, установленные в насосной станции пожаротушения и хозяйственно-питьевого водоснабжения;
 - наружные и внутренние сети.

Система хозяйственно-питьевого водопровода работает по следующей схеме. Вода поступает в два резервуара питьевой воды, пройдя предварительное измерение на коммерческом узле учета потребляемой воды. Из резервуаров запаса насосами вода подается в наружную подземную сеть хозяйственно-питьевого водопровода и далее во внутренние сети зданий к потребителям.

В соответствии с п.7.4 СП 31.13330.2012 перерыв в подаче воды для системы водоснабжения III категории допускается на время не более чем 24 часа.Общий объем запаса воды на питьевые нужды соответствует суточной потребности в питьевой воде объекта.

В насосной станции пожаротушения и хозяйственно-питьевого водоснабжения предусматривается установка двух насосов питьевой воды (1 рабочий, 1 резервный) с частотным регулированием. Предусматривается автоматическая работа насосов от давления в сети.

Для хозяйственно-питьевого водоснабжения проектируемых зданий предусматривается тупиковая подземная наружная сеть от насосной станции до проектируемых зданий.

В проектируемых зданиях предусматривается подача воды к водоразборным приборам тупиковыми системами внутреннего хозяйственно-питьевого водопровода.

Приготовление горячей воды предусмотрено в теплообменниках (главный корпус, АБК) или электрических водонагревателях, устанавливаемых непосредственно в обслуживаемых зданиях.

Внутренние сети предусматриваются из стальных водогазопроводных оцинкованных и полипропиленовых труб, наружные сети — из полиэтиленовых труб по ГОСТ 18599-2001. Наружная сеть хозяйственно-питьевого водопровода прокладывается в земле ниже глубины промерзания на 0,5 м.

Система производственно-противопожарного водоснабжения.

Проектируемая система производственно-противопожарного водоснабжения обеспечивает подачу воды:

- на наружное и внутреннее пожаротушение зданий и сооружений объекта;
- на производственные нужды объекта (технологические, нужды ВПУ, полив территории, гидроуборка помещений и т.д).
- В состав сооружений системы производственно-противопожарного водоснабжения входят:
- группа противопожарных насосов, установленных в насосной станции пожаротушения и хозяйственно-питьевого водоснабжения;
- группа повысительных противопожарных насосов, установленных в главном корпусе (ГК) для нужд внутреннего пожаротушения;
- группа производственных насосов, установленные в насосной станции пожаротушения и хозяйственно-питьевого водоснабжения;
- два резервуара противопожарного и производственного запаса воды, $2x1000m^3$ (объем буден уточнен в ПД);
- наружная кольцевая внутриплощадочная сеть, с установленными на ней пожарными гидрантами и предусмотренными вводами в проектируемые здания;

	– внутренняя система пожаротушения проектируемых зданий.											
							Док. №	Лист				
							Apx. № 027-ΠΤ1-Π3	60				
И	1зм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	60				

№ подл.

Система производственно-противопожарного водоснабжения работает по следующей схеме.

Подача воды на площадку в систему производственно-противопожарного водоснабжения предусматривается совместно с подачей воды на питьевые нужды завода, по одному общему трубопроводу. Вода поступает в два резервуара производственного и противопожарного запаса воды.

Из резервуаров запаса вода подается:

- на нужды пожаротушения - пожарными насосами (1 рабочий, 1 резервный) в наружную кольцевую подземную сеть производственно-противопожарного водопровода и далее во внутренние сети зданий.

В дежурном режиме давление в системе производственно- противопожарного водопровода поддерживается группой производственных насосов .

Для обеспечения требуемого напора на внутреннее пожаротушение ГК предусматривается установка внутри главного корпуса двух повысительных насосов пожаротушения.

Установка повысительных насосов пожаротушения предусматривается в помещении насосной станции пожаротушения, предусматриваемой на отметке 0.000 главного корпуса.

Давление в напорной сети повысительных насосов пожаротушения главного корпуса поддерживается насосом-жокеем.

– на производственные нужды (нужды ВПУ, технологические нужды, гидроуборка производственных помещений, полив территории) - группой производственных насосов (2 раб, 1 рез).

Расчетный расход воды на нужды пожаротушение составляет 120 л/с (будет уточнен в ПД).

Расчетный расход вод на производственные нужды составляет ~ 17,2 м³/ч, на адиабатическое охлаждение блоков ABO – 0,96 м3/час периодически, при повышении температуры наружного воздуха больше 29°С (будет уточнен в ПД).

Электроснабжение пожарных насосов предусматривается по 1-ой категории особой группы надежности.

В каждом резервуаре производственно-противопожарного запаса хранится:

- 50% расчетного объема воды, необходимого для пожаротушения;
- запас воды на обеспечение производственных нужд на 24ч.

Восстановление пожарного запаса воды (после пожара) предусматривается в течении 24 часов.

Наружная сеть кольцевого производственно-противопожарного водопровода прокладывается в земле ниже глубины промерзания на 0,5 м. Наружные сети проектируемого противопожарного водопровода принимаются из труб напорных полиэтиленовых по ГОСТ 18599-2001.

Системы внутреннего производственно-противопожарного водопровода проектируемых зданий предусматриваются из труб стальных электросварных по ГОСТ 10704-91, труб стальных водогазопроводных по ГОСТ 3262-75.

Системы водоотведения

Отвод бытовых стоков проектируемого объекта предусматривается в коллектор хозяйственно-бытовых стоков ПО «Казаньоргсинтез». (Приложение 1).

Отвод очищенных производственно-дождевых сточных вод с площадки проектируемого объекта предусматривается в промышленно-ливневой коллектор канализации ПО «Казаньоргсинтез» DN 800мм.

В соответствии с требованиями ПО «Казаньоргсинтез» подключение к сетям хозяйственно-бытовой и промышленно-ливневой канализации осуществляется при условии перекладки 0,310 км промышленно-ливневого коллектора, устройства

L								
							Док. №	Лист
							Арх. № 027-ПТ1-ПЗ	61
	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	01

Подп. и дата

Инв. № подл.

(при необходимости) хозяйственно-бытовой модернизации **узлов учета** канализационной насосной станции.

В соответствии с ТЗ на проектирование разработка проектной и рабочей документации по внеплощадочным сетям и сооружениям водоотведения выполняется по отдельному проекту.

Подача сточных вод от площадки объекта до внешних приемников сточных вод обеспечиваются напорными сетями.

На проектируемой площадке завода предусматриваются следующие системы водоотведения:

- система бытовой канализации;
- система производственно-дождевой канализации;
- система канализации замасленных стоков.

Бытовая канализация.

В состав системы бытовой канализации проектируемого объекта входят:

- внутренние системы проектируемых зданий;
- самотечные наружные подземные сети от проектируемых зданий до насосной станции бытовых стоков;
 - насосная станция бытовых стоков;
- напорный трубопровод бытовых стоков от насосной станции бытовых стоков до ограды площадки;
- внеплощадочная сеть бытовой канализации (разрабатывается отдельному проекту).

Стоки от санитарных приборов, расположенных в проектируемых зданиях и производственные стоки от буфета, расположенного в здании АБК, отводятся самотеком по внутренним сетям в проектируемую самотечную наружную сеть и далее в насосную станцию бытовых стоков, которая перекачивает стоки в сеть ПО «Казаньоргсинтез».

Перед подключением стоков моечной посуды буфета в бытовую канализацию предусматривается установка жироуловителя.

На напорном трубопроводе бытовых стоков предусматривается коммерческий узел учета.

Трубопроводы внутренних систем бытовой канализации проектируемых зданий предусмотрены из полипропиленовых и чугунных труб. Самотечные наружные сети предусмотрены из полипропиленовых труб с двухслойной стенкой и чугунных труб.

Система производственно-дождевой канализации

Для сбора и отвода дождевых, талых и поливомоечных сточных вод с завода предусматривается система территории производственно-дождевой канализации, в которую также отводятся условно чистые стоки производственные стоки главного корпуса и очищенные нефтесодержащие стоки.

В состав проектируемой системы входят:

Взам. инв. №

Подп. и дата

№ подл.

- система внутренних водостоков проектируемых зданий, предназначенная для сбора и самотечного отвода дождевых и талых вод с кровли в проектируемую самотечную наружную сеть;
 - самотечные системы отвода условно чистых стоков;
 - самотечная наружная сеть с дождеприемниками;
 - очистные сооружения блочно-модульной установки;
 - насосная станция очищенных стоков;
 - насосная станция производственно-дождевых стоков;

П	- ілоща		порнь	ый труб	опро	вод дождевых стоков от насоснои станции до огра	ды
						Док. №	Лист
						Арх. № 027-ПТ1-П3	62
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	02

Схема работы системы производственно-дождевой канализации следующая. Стоки через дождеприемники собираются в проектируемую сеть, в которую также подключаются источники дождевых, талых и условно чистых стоков проектируемых зданий и сооружений. На концевом участке проектируемой сети, в колодцеделителе, происходит разделение стоков. Сток от малоинтенсивных дождей, а также наиболее загрязненная часть стока от интенсивных дождей, направляется на производственно-дождевых Оставшаяся очистные сооружения стоков. (незагрязненная) часть стока от интенсивных дождей и очищенные на очистных направляется насосную сооружениях СТОКИ В станцию очищенных производственно-дождевых стоков и далее отводится за пределы площадки объекта. Часть очищенных стоков подается на повторное использование - в резервуары производственно-противопожарного запаса.

В соответствии с п. 7.6.3 СП 32.13330.2012 «Канализация. Наружные сети и сооружения» поверхностный сток с территории промышленных предприятий определяется характером основных технологических процессов. Технологический процесс завода, на котором сырьем является бытовые отходы и природный газ, а конечным продуктом электрическая энергия, зола и шлак не предусматривает образования специфических веществ с токсичными свойствами или значительных количеств органических веществ, обуславливающих высокие показателей ХПК и БПК5 поверхностного стока. Ввиду отсутствия в поверхностном стоке вышеуказанных загрязнений в соответствии с п.7.6.4 СП 32.13330.2012 проектируемый объект относится к предприятиям поверхностный сток с территории которых близок по составу к поверхностному стоку селитебных территорий (первая группа).

Согласно п. 4.11 СП 32.13330.2012 принимается отвод на очистные сооружения наиболее загрязненной части поверхностного стока, которая образуется в периоды выпадения дождей, таяния снега и от мойки дорожных покрытий, в количестве не менее 70% годового объема стока.

На очистных сооружениях значения концентраций загрязнений в стоках снижаются до уровня допустимых к сбросу (будет уточнено в ПД).

В состав блочно-модульной установки очистных сооружений входят:

- аккумулирующая подземная железобетонная емкость, оснащенная нефтесорбирующими бонами для предварительной очистки от всплывших нефтепродуктов;
- блок механизированного удаления, пескоулавливания и обезвоживания осадка с насосами подачи воды на обезвоживание;
 - насосная станция подачи производственно-дождевой воды на очистку.

Накопленные нефтепродукты вывозятся специальной техникой в места захоронения в соответствии с Договором на размещение отходов.

Накопленный осадок после обезвоживания периодически вывозится в места захоронения в соответствии с Договором на размещение отходов.

Максимальный расход стоков, перекачиваемых насосной станцией за пределы площадки, составляет 5,0 м³/ч, 150 л/с в период интенсивных дождей (будет уточнен в ПД).

Канализация замасленных стоков

Канализация замасленных стоков предназначена для сбора и отведения сточных вод с территории автостоянок и от автодороги грузового проезда до зоны разгрузки отходов, для отвода стоков из компрессорной станции.

В состав проектируемой системы входят:

	_	ca	мотеч	ная нар	ружна	ая сеть с дождеприемниками;	
						Док. №	Лист
						рх. № 027-ПТ1-ПЗ	
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	63

нв. № подл.

очистные сооружения блочно-модульной установки.

Дождевые и талые сточные воды с территорий, подверженных загрязнению, собираются в дождеприемники и по проектируемой сети канализации замасленных стоков поступают в насосную станцию, откуда подаются на очистные сооружения замасленных стоков.

В состав очистных сооружений замасленных стоков входят:

- аккумулирующая емкость;
- блочно-модульная установка.

Блочно-модульная установка оборудуется блоком механизированного удаления, пескоулавливания и обезвоживания осадка, насосной станцией для удаления очищенных стоков и насосами подачи осадка на обезвоживание.

Накопленные нефтепродукты вывозятся специальной техникой в места захоронения в соответствии с Договором на размещение отходов.

Накопленный осадок после обезвоживания периодически вывозится в места захоронения в соответствии с Договором на размещение отходов.

Очищенные сточные воды отводятся в канализацию производственно-дождевых стоков.

Система аварийного слива масла

Для аварийного слива масла из маслосистем устанавливаемой турбины и предусматриваются трансформаторов подземные резервуары масла. соответствующего резервуарам подведены закрытые самотечные сети назначения. Полезная емкость каждого из резервуаров выбрана по объему маслосистемы, обслуживаемой данным резервуаром. Резервуары оборудуются осуществляется указателями уровня. Удаление масла резервуара ИЗ передвижными средствами.

Схема водного баланса Объекта приведена на чертеже 027-ПТ1-ГР1 л.2

1.2.12 Отопление, вентиляция и кондиционирование воздуха, тепловые сети

Основные технические решения, допустимые и оптимальные нормы температуры, относительной влажности и скорости движения воздуха в рабочей зоне помещений принимаются в соответствии с действующими нормативными документами.

Расчетные параметры наружного воздуха района строительства (температура наружного воздуха, продолжительность и средняя температура отопительного периода) приняты для г. Казани в соответствии с СП 131.13330.2012 «Строительная климатология».

Теплоснабжение систем отопления и вентиляции

Теплоснабжение систем отопления и теплоснабжение приточных установок главного корпуса и всех проектируемых зданий предусматривается от сетевых трубопроводов собственных нужд по зависимой схеме через автоматизированные индивидуальные тепловые пункты (ИТП), расположенные в каждом здании на вводе теплоносителя. Индивидуальные тепловые пункты оснащены всеми необходимыми приборами учета и контроля и размещаются в зданиях в соответствии с требованиями СП 41-101-95 «Проектирование тепловых пунктов».

Потребителями тепла являются:

						Док. №	Лист
						Äpx. № 027-ПТ1-П3	64
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	04

1В. № подл. П

производственных административно-бытовых системы вентиляции помещений, присоединяемые по зависимой схеме непосредственно, изменения параметров теплоносителя;

системы отопления производственных помещений, присоединяемые по зависимой схеме непосредственно, без изменения параметров теплоносителя;

системы отопления административно-бытовых помещений, присоединяемые по зависимой схеме через смесительные насосные узлы с изменением параметров теплоносителя;

системы горячего водоснабжения, присоединяемые по независимой схеме, через промежуточные теплообменники, которые размещаются в индивидуальных тепловых пунктах зданий с системами горячего водоснабжения.

Отопление

В помещениях котельного и турбинного отделений, в отделении очистки дымовых газов главного корпуса в рабочем режиме, при работе технологического оборудования, отопление не предусматривается. При отсутствии тепловыделений (технологическое оборудование не работает) предусматривается монтажное и дежурное отопление для поддержания температуры воздуха в рабочей зоне не менее +13°C.

В помещении загрузки и в помещении бункера отходов предусматривается воздушное отопление, совмещенной с приточной вентиляцией, за счет перегрева приточного воздуха, для поддержания температуры внутреннего воздуха не менее +5°C.

Во всех помещениях электротехнических устройств, помещениях систем контроля и управления предусмотрено дежурное отопление электрическими нагревательными приборами, имеющими уровень защиты от поражения током класса 0 и температуру теплоотдающей поверхности ниже допустимой по приложению «Д» СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха», с автоматическим регулированием тепловой мощности нагревательного элемента в зависимости от температуры воздуха в помещении.

В кабельных помещениях отопление не предусматривается.

В помещении аккумуляторной батареи предусматривается воздушное отопление, совмещенное с приточной вентиляцией. В системе предусматривается 100% резерв по оборудованию.

В помещениях ВПУ со складами реагентов, в компрессорной станции, в административно-бытовых помещениях, в мастерской предусматривается водяное отопление местными нагревательными приборами. Параметры теплоносителя в системе отопления приняты согласно приложения «Д» СП 60.13330.2012. В качестве нагревательных приборов приняты секционные радиаторы.

В отделении шлакоудаления предусматривается воздушное отопление, совмещенное с приточной вентиляцией. В системе предусматривается 100% резерв по оборудованию.

В помещениях насосной станции пожаротушения и хозяйственно-питьевого водоснабжения. предусматривается водяное отопление местными нагревательными приборами. Параметры теплоносителя в системе отопления приняты согласно приложения «Д» СП 60.13330.2012. В качестве нагревательных приборов приняты секционные радиаторы и регистры из гладких труб (склад масла).

В складе баллонов газа в соответствии с технологическим заданием отопление не предусматривается.

Подп. и да	
Инв. № подл.	

Взам. инв. №

					Док. № Ару Мо	027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	дрх. № Файл:	

В помещениях главной проходной и грузовой проходной весовой предусматривается электрическое отопление нагревательными приборами, имеющими уровень защиты от поражения током класса 0 и температуру теплоотдающей поверхности ниже допустимой «Д» ПО приложению 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха», автоматическим регулированием тепловой мощности нагревательного элемента в зависимости от температуры воздуха в помещении.

Вентиляция

В помещениях котельного и турбинного отделений, в отделении очистки дымовых газов главного корпуса для обеспечения нормируемых параметров И **УСТОЙЧИВОЙ** работы технологического оборудования среды предусматривается общеобменная приточно-вытяжная вентиляция механическим побуждением. Расходы воздуха приняты из условия ассимиляции тепловых выделений от технологического оборудования и с учетом забора воздуха на вторичное дутье из помещения котельного отделения. В теплый период года в котельное отделение, турбинное отделение и отделение очистки дымовых газов предусмотрен дополнительный естественный приток и механическая вытяжка.

В помещении загрузки предусматривается приточная вентиляция, совмещенная с воздушным отоплением. Удаление воздуха осуществляется из верхней зоны бункера отходов для первичного дутья в топки котлов (при работе котлов), или крышными вентиляторами из верхней зоны бункера отходов (на период остановки котлов и осуществления загрузки бункера отходов). Бункер отходов находится под разряжением, что препятствует распространению неприятных запахов за пределы помещения.

У ворот в помещении загрузки, в отделении шлакоудаления и в котельном отделении предусматривается установка воздушно-тепловых завес отсекающего типа. Включение завес блокируется с приводами для открывания ворот.

Для электротехнических помещений предусматривается приточно-вытяжная вентиляция с механическим и естественным побуждением, рассчитанная на ассимиляцию тепловых выделений от оборудования и поддержания температуры внутреннего воздуха не выше требуемых параметров. Включение/отключение оборудования систем вентиляции предусматривается по сигналам от датчиков температуры внутреннего воздуха в обслуживаемых помещениях.

В помещениях систем контроля и управления предусматривается механическая приточная вентиляция в объеме согласно требованиям нормативной документации.

Для удаления теплопоступлений от технологического оборудования и поддержания температуры в пределах требуемых норм в помещениях крановщика, объединенного щита управления и других помещениях систем контроля и управления предусматриваются системы кондиционирования воздуха.

Помещение аккумуляторной батареи оборудовано стационарной системой приточно-вытяжной вентиляции с механическим побуждением из условия разбавления водорода. Удаление воздуха системой механической вентиляции производится из нижней и верхней зоны наружу через эжектор. Дополнительно предусмотрена естественная вытяжка из верхней зоны в объеме однократного воздухообмена.

В отделении хранения и отгрузки шлака предусмотрена механическая приточная вентиляция, совмещенная с воздушным отоплением. Приток подается в нижнюю часть помещения с малой скоростью, вытяжка из верхней зоны крышными

Подп. и дата	
Инв. № подл.	
	№ подл. Подп. и

Взам. инв. №

						Док. №	
							027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	

вентиляторами. В зонах заезда автомобилей под загрузку предусмотрена вытяжная вентиляция из верхней и нижней зоны помещения.

Для помещений административного назначения предусматривается механическая приточно-вытяжная вентиляция по кратностям обмена воздуха в один час, но не менее нормируемого воздухообмена на одного человека в час.

Для бытовых помещений предусматривается приточно-вытяжная вентиляция с механическим побуждением. Подача наружного воздуха осуществляется в размере, соответствующем требованиям СП 44.13330.2011 «Административные и бытовые здания». Удаление воздуха из гардеробов домашней и уличной одежды осуществляется частично через душевые, частично непосредственно из гардероба, из гардеробов спецодежды - непосредственно из гардероба.

Для обеспечения комфортных условий для обслуживающего персонала в административных помещениях в теплый период года предусматривается установка сплит-систем «только холод».

помещений водоподготовительной установки, складов реагентов, аналитической лаборатории предусматриваются отдельные системы общеобменной приточно-вытяжной вентиляции и системы местных отсосов воздуха от лабораторных шкафов. Воздухообмены принимаются из условия разбавления тепловых поступлений и компенсации воздуха, удаляемого местными соответствии с требованиями санитарных отсосами, технологического проектирования.

В помещении мастерской предусмотрена общеобменная механическая приточно-вытяжная вентиляция из расчета ассимиляции теплопоступлений от работающего оборудования.

В шахту лифта, предназначенного для перевозки пожарных подразделений, предусматривается подача приточного воздуха при пожаре.

В котельном отделении в незадымляемую лестничную клетку типа Н2, разделенную рассечками на зоны, предусматриваются системы приточной противодымной вентиляции, отдельные для каждой зоны.

Для помещений насосной станции пожаротушения и хозяйственно-питьевого водоснабжения предусматривается приточно-вытяжная вентиляция с механическим и естественным побуждением, рассчитанная на ассимиляцию тепловых выделений от оборудования и поддержания температуры внутреннего воздуха не выше требуемых параметров.

Для помещений главной и грузовой проходных предусматривается приточновытяжная вентиляция с естественным побуждением.

Оборудование систем отопления, вентиляции и кондиционирования воздуха

Для систем вентиляции и кондиционирования воздуха предусматривается следующие типы оборудования:

- комплектно-блочные приточные установки со шкафами управления, размещаемые внутри зданий;
 - сплит-системы с наружными блоками в низкотемпературном исполнении;
- вентиляторы и воздушные клапаны в общепромышленном исполнении в системах, обслуживающих помещения без выделения взрывопожароопасных газов и паров;
- вентиляторы и воздушные клапаны во взрывозащищенном исполнении в системах, обслуживающих помещения с выделением взрывопожароопасных газов и паров;
- вентиляторы в коррозионностойком исполнении в системах, обслуживающих помещения с выделением коррозионно-активных газов и паров.

						Док. №
						Арх. № 027-ПТ1-ПЗ
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

Взам. инв. №

В системах вентиляции предусматриваются воздуховоды из стали тонколистовой оцинкованной и воздуховоды плотные требуемого класса герметичности.

Для систем отопления предусматриваются следующие типы оборудования:

- регистры из гладких труб, секционные радиаторы;
- секционные радиаторы в административных и бытовых помещениях;
- электроконвекторы с терморегуляторами в электротехнических помещениях.

Трубопроводы систем отопления и теплоснабжения предусматриваются из стальных электросварных и водогазопроводных труб.

Мероприятия по шумоглушению

В соответствии с санитарными и строительными нормами проектирования для снижения уровня шума от работающих установок до значений требуемого уровня звукового давления на рабочих местах предусмотрены следующие мероприятия:

- скорости воды в трубопроводах принимаются с учетом нормируемого уровня шума в помещениях;
- скорости воздуха в воздуховодах, воздуховыпускных и воздухоприемных устройствах принимаются с учетом нормируемого уровня шума в помещениях;
- установка шумоглушителей в воздуховодах для помещений с постоянным присутствием персонала;
 - размещение радиальных вентиляторов на виброизоляторах;
- применение мягких вставок в местах присоединения вентиляторов на виброизоляторах к воздуховодам и шахтам;
- звукопоглощающая изоляция ограждающих конструкций помещений вентиляционных камер смежных с помещениями с нормируемым уровнем шума.

Противопожарные мероприятия в системах отопления, вентиляции и кондиционирования воздуха

Противопожарные мероприятия предусмотрены в соответствии с СП 7.13130.2013 «Отопление, вентиляция и кондиционирование. Требования пожарной безопасности», СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха», СП 90.13330.2012 «Электростанции тепловые», ПУЭ «Правила устройства электроустановок» и другими нормативными документами.

Управление, блокировки, защиты и автоматизация систем отопления, вентиляции и кондиционирования воздуха

Управление системами отопления, вентиляции и кондиционирования воздуха предусматривается по месту их установки, с локальных щитов управления отдельных зданий и с объединенного щита управления (ОЩУ) главного корпуса.

Контроль параметров выполняется в соответствии с СП 60.13330.2012 «Отопление, вентиляция и кондиционирование воздуха».

Сигнализация о работе оборудования («Включено», «Авария») предусматривается для систем:

- вентиляции производственных и административных помещений без естественного проветривания;

						Док. №	Лист
						Арх. № 027-ПТ1-П3	68
Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:	00

В. № подл.

Лист

- местных отсосов, удаляющих вредные вещества 1-го и 2-го классов опасности или взрывоопасные смеси;
 - общеобменной вытяжной вентиляции помещений категорий А.

В системах предусматриваются следующие основные блокировки:

- отключение вентиляторов и закрытие соответствующих противопожарных клапанов при обнаружении пожара в помещениях, оборудованных системами автоматического обнаружения пожара или автоматическими установками пожаротушения;
- блокирование вентиляторов с другими вентиляторами, с заслонками с электрическими приводами и противопожарными клапанами;
- включение/отключение оборудования систем по сигналам датчиков температуры;
 - защита воздухонагревателей от замерзания;
- автоматическое включение резерва. Выбор рабочего и резервного оборудования осуществляется оператором;
- запрет включения зарядных устройств аккумуляторов при отключенных вытяжных вентиляторах;
 - защита от коротких замыканий и перегрузок в электрических цепях.
- блокировка заслонок наружного воздуха с электрическими приводами по минимальному расходу наружного воздуха.

1.2.13 Штатное расписание

Взам. инв. №

Подп. и дата

Численность промышленно-производственного персонала (ППП) для обслуживания проектируемого завода по термическому обезвреживанию ТКО, составляет 98 чел., в том числе эксплуатационный персонал - 87 чел., ремонтный персонал – 11 чел.

Численность привлекаемого персонала составляет 82 чел., в том числе эксплуатационный персонал – 44 чел., ремонтный персонал – 38 чел.

Распределение численности ППП по подразделениям, группам производственных процессов, на эксплуатационный и ремонтный персонал и максимальная численность персонала смены представлены в таблице 1.2.13.1

Распределение численности привлекаемого персонала по участкам, группам производственных процессов, на эксплуатационный и ремонтный персонал и максимальная численность персонала смены представлены в таблице 1.2.13.2.

Таблица 1.2.13.1 - Распределение численности ППП завода по термическому
обезвреживанию ТКО

Наименование	Группа	Всего,	в том ч	Максималь-	
подразделения	произво- дствен- ного про- цесса	чел.	эксплуа- тацион- ный пер- сонал	ремон- тный персо- нал	ная числен- ность пер- сонала сме- ны, чел.
1 Административно- управлен- ческий персонал (АУП)	1a	11	11	-	11
Итого: 2 Персонал при АУП		11	11	-	11

10.00							
2							Док. №
Инв.							Арх. № 027-ПТ1-ПЗ
Ż	Изм.	Кол.уч	Лист	№ док.	Подп.	Дата	Файл:

					72
2.1 Производственный	1a	9	9	-	5
отдел					
2.2 Служба эксплуатации	1б	1	1		1
инженерных систем	1в	7	7	-	3
Итого:		17	17	-	9
3 Котлотурбинный цех	1a	22	22	-	6
	1б	1	1	-	1
	1в	17	17	-	5
Итого:		40	40	-	12
4 Электрический цех	1a	2	2	-	2
	1б	11	11	-	7
4.1 Участок ТАИ (в т.ч. АСУТП)	1a	4	4	-	4
,	1б	2	2	-	2
Итого:		19	19	-	15
5 Ремонтно-механический	1a	1	-	1	1
цех	1б	2	-	2	2
	1в	6	-	6	6
	1в	2		2	2
Итого:		11	-	11	11
Всего по заводу:		98	87	11	58

Таблица 1.2.13.2 - Распределение численности привлекаемого персонала

Всего,

в том числе

Группа

Максималь-

Лист

70

Наименование

Взам. инв. №

Подп. и дата

Инв. № подл.

Изм. Кол.уч Лист № док.

подразделения	произво-	чел.	эксплуа-	ремон-	ная числен-	
	дствен-		тацион-	тный	ность пер- сонала сме-	
	ного про-		ный пер-	персо-		
	цесса		сонал	нал	ны, чел.	
6 Привлекаемый персонал						
6.1 Сторожевая охрана и	1a	16	16	-	4	
бюро						
пропусков						
Итого:		16	16	-	4	
6.2 Уборка помещений и	1в	10	10	-	10	
территорий	2г	2	2	-	2	
Итого:		12	12	-	12	
6.3 Вывоз ЗШО	1в	11	11	-	11	
Итого:		11	11	-	11	
6.4 Проведение	1a	1	1	-	1	
химанализов						
6.5 Завоз реагентов		-	-	-	-	
. Итого:		1	1	-	1	
6.6 Буфет	1a	1	1	-	1	
, .	1в	2	2	-	2	
Итого:		3	3	-	3	
6.7 Медпункт	1a	1	1	-	1	
Итого:	-	1	1	-	1	
6.8 Капремонт	1б	6	-	6	6	
оборудования,						
зданий и сооружений	1в	19	-	19	19	
.,	1в	4	-	4	4	
	2г	9	-	9	9	
Итого:		38	-	38	38	
Всего привлекаемого						
персонала:		82	44	38	70	

Док. №

дата Файл:

Подп.

Арх. № 027-ПТ1-ПЗ

Лист

1.3 Перечень приложений

п/п	Наименование	Примечание
1	ТУ на подключение к инженерным сетям г.Казани	
	Письмо №07-15/2694 от 31.01.2018г (МУП «Водоканал»)	

Взам. инв. №				
Подп. и дата				
одл.				
нв. № подл.				Док. № Арх. № 027-ПТ1-ПЗ

Дата Файл:

Изм. Кол.уч Лист № док. Подп.

1. 03 2018 Nº 83/5490 Ha Nº 25.18-K2 am 16.02 2018

063996

Вход. № 23.18-К.2 «05» 03 20/8 г.

> О ТУ на водоснабжения и водоотведения.

ООО «Альтернативная генерирующая компания-2 Исполнительному директору Р.Р. Нигматуллину Ул.Большая Татарская д.9 Офис 1Б, г. Москва 115184

УВАЖАЕМЫЙ РАМИЛЬ РАФАИЛОВИЧ!

Сообщаем, что Ваше обращение с уточнениями о технических условиях на подключение к системам водоснабжения и водоотведения ПАО «Казаньоргсинтез для завода по термическому обезвреживанию ТКО рассмотрено. Для достижения запрашиваемых Вами технических условий на подключение к сетям необходимо предусмотреть следующие мероприятия, а именно:

По водоснабжению предусмотреть:

- 1. Замену участка трассы водопровода от ПГ-226 до ПГ-222, Ду-219 мм (сталь) на Ду-315 мм п/э для увеличения пропускной способности и надежности водоснабжения действующего трубопровода.
- 2. Замену участка трассы кольцевого водопровода от ПГ-226,Ду-300 мм (сталь) на Ду-400 мм п/э до врезок на базисные склады, индустриальный парк М-7, асфальтный завод «Евроасфальтгрупп» для увеличения пропускной способности и надежности водоснабжения действующего трубопровода.
- 3. Запроектировать и смонтировать трубопровод от ПГ-223 до базисных складов 109/2 Ду-315 мм п/э, для увеличения надежности водоснабжения опасных производственных объектов, о присутствии которых за территорией основной производственной площадки ПАО «Казаньоргсинтез» указывалось в ранее направленном письме за исх.№83/4017 от 15.02.2018 г.
- 4. После выполнения всех вышеуказанных мероприятий точкой подключения принять район базисных складов 109/2(точка №1), давление воды 2.5-3.5кгс/см², диаметр трубопровода Ду-355мм п/э.
- 5. Запроектировать узел учета водопотребления с выводом параметров в автоматизированную информационную производственную систему ПАО «Казаньоргсинтез».

Казанское публичное акционерное общество «Органический синтез» (ПАО «Казаньоргсинтез») ул. Беломорская, д.101, г. Казань, Республика Татарстан, Российская Федерация, 420051 Тел./Факс: +7 (843) 533-98-09 / +7 (843) 533-97-94 kos@kos.ru, www.kazanorgsintez.ru

Kazan Public Joint Stock Company «Organichesky sintez» (PJSC « Kazanorgsintez») 101, Belomorskaya St., Kazan, Tatarstan, Russia, 420051 Tel./Fax: +7 843 533 98 09 / +7 843 533 97 94 kos@kos.ru, www.kazanorgsintez.ru

По водоотведению предварительно рассмотреть предложенные варианты:

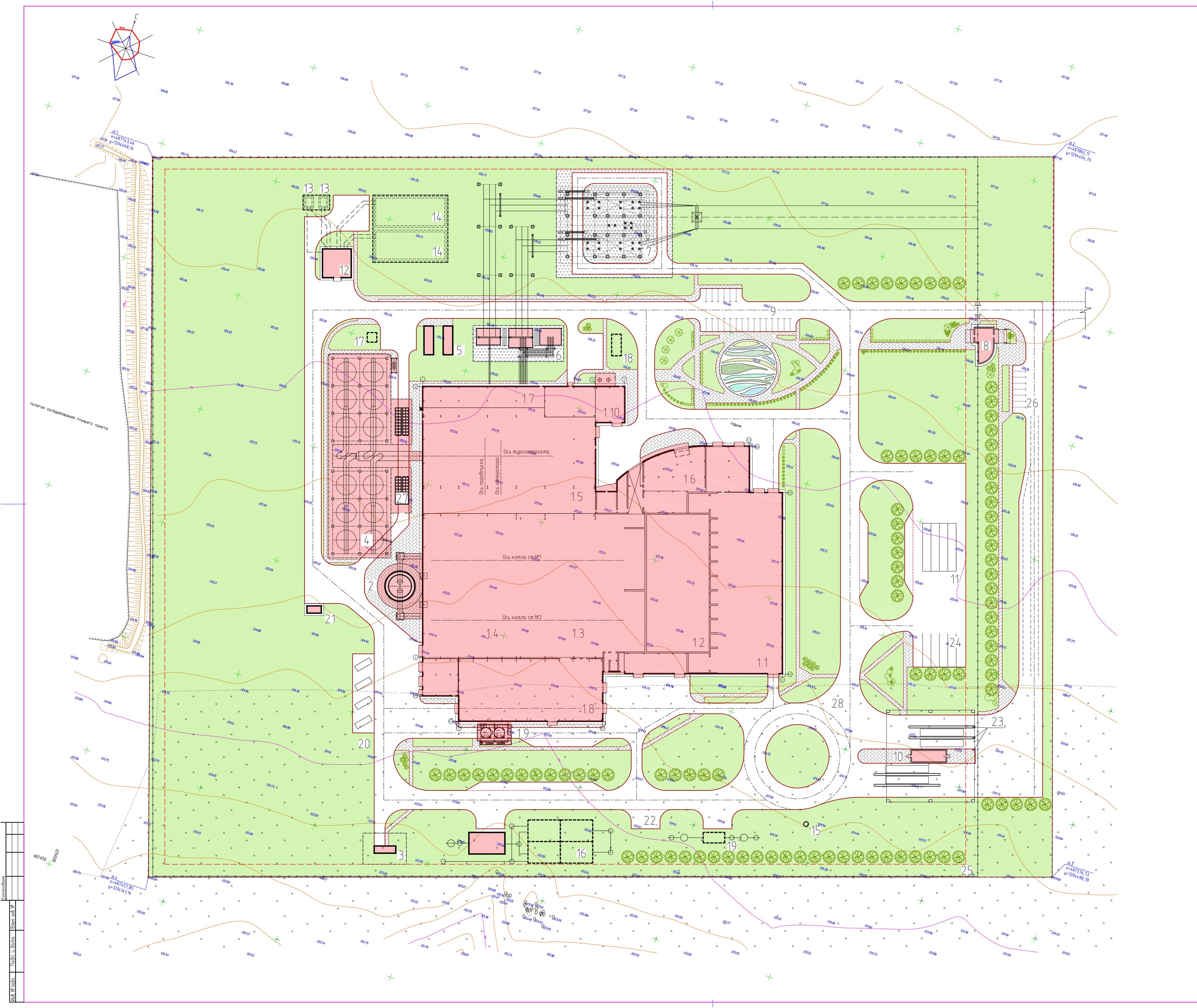
- 1. Вариант №1.Точкой подключения (точка №3) хозяйственно бытовых стоков считать коллектор хозяйственно бытовых стоков, материал трубы керамика Ду-200 мм., отметка низа логка 119,92. При подключении необходимо запроектировать и смонтировать колодец с установкой прибора учета и вывода информации в автоматизированную информационную производственную систему ПАО «Казаньоргсинтез». Данный вариант возможен только с учетом обязательного проведения модернизации канализационной насосной станции корпуса №185 для увеличения ее пропускной способности.
- 2. Вариант №2. Точкой подключения (точка №4) хозяйственно бытовых стоков считать коллектор хозяйственно бытовых стоков, материал трубы керамика Ду-200 мм., отметка низа лотка 120,13. При подключении необходимо запроектировать и смонтировать колодец с установкой прибора учета водоотведения и вывода информации в автоматизированную информационную производственную систему ПАО «Казаньоргсинтез».
- 3. Точкой подключения (точка№2) промышленно-ливневых стоков со средним расходом 120 м³/сутки(5 м³/час) считать коллектор промышленно-ливневой канализации от колодца №ЛК—788 до колодца №ЛК-2, материал трубы ж/б Ду-800 мм., отметка низа лотка 121,29. С условием восстановления изношенного участка коллектора протяженностью 310 п.м. При подключении необходимо запроектировать и смонтировать колодец с прибором учета водоотведения и вывода информации в автоматизированную информационную производственную систему ПАО «Казаньоргсинтез».

Для окончательной оценки возможности приема сточных вод, прошу Вас дополнительно предоставить ответ на вопросы, изложенные в с/з №26-НиОПСВ/23376 от 28 02.2018 г.

Данные по запросу анализа воды сведены в таблице ниже по тексту.

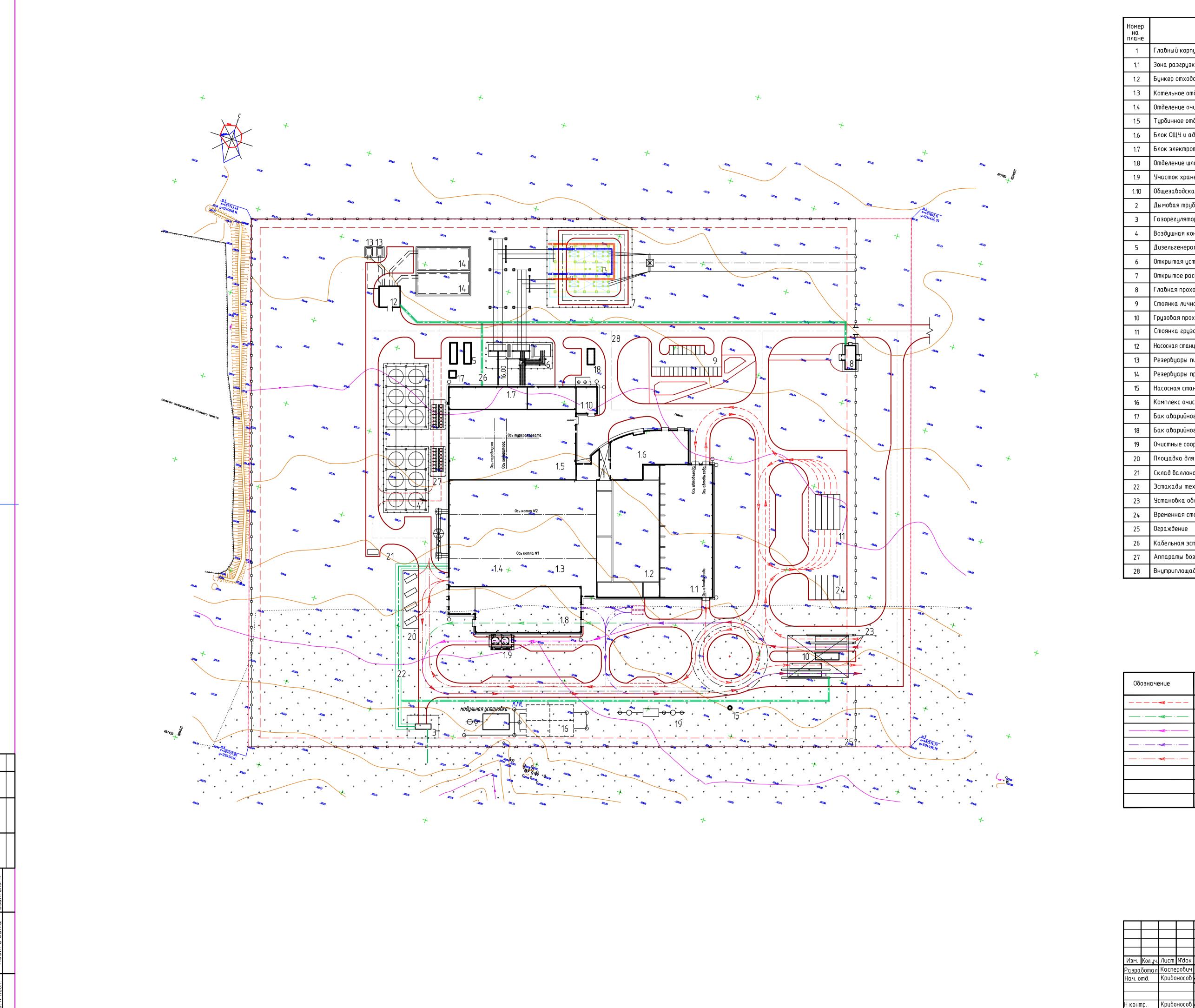
№n /п	Показатель	Норма по СанПиН 2.1.4.1074- 01	Факт.сред- негодовой результат 2013г	Факт.сред- негодовой результат 2014г	Факт.сред- негодовой результат 2015г	Факт.сред- негодовой результат 2016г	Факт.сред- негодовой результат 2017г(1-10)
1	2	3	4	5	6	7	8
1	Водородный показатель, единица рН	6-9	7,12	7,39	7,54	7,45	7,22
2	Сухой остаток, мг/дм ³	Не более 1000	242,8	244,9	291,2	258,3	248,2
3	Нефтепродукты суммарно, мг/дм ³	Не более 0,1	Менее 0,05				
4	Железо (Fe, суммарно), мг/дм ³	Не более 0,3	0,23	0,24	0,14	0,20	0,235
5	Нитраты (NO ₃), мг/дм ³	Не более 45	3,19	3,05	3,67	3,02	3,91
6	Нитриты (NO ₂), мг/дм ³	Не более 3,3	0,0058	0,0048	0,0056	0,0040	0,0040
7	Сульфаты (SO ₄ ²⁺), мг/дм ³	Не более 500	39	38,7	61,8	74,5	49,5
8	Хлориды (Cl), мг/дм³	Не более 350	24,9	19,9	21,1	18,35	18,86
9	Магний, мг/дм ³	Не более 50	14	9,37	16,09	6,21	10,32

Приложение:


- 1. Схема в 1 экз. на 1 листе.
- 2. Служебная записка №26-НиОПСВ/23376 от 28.02.2018 г. в экз. на 1 листе.

Главный инженер

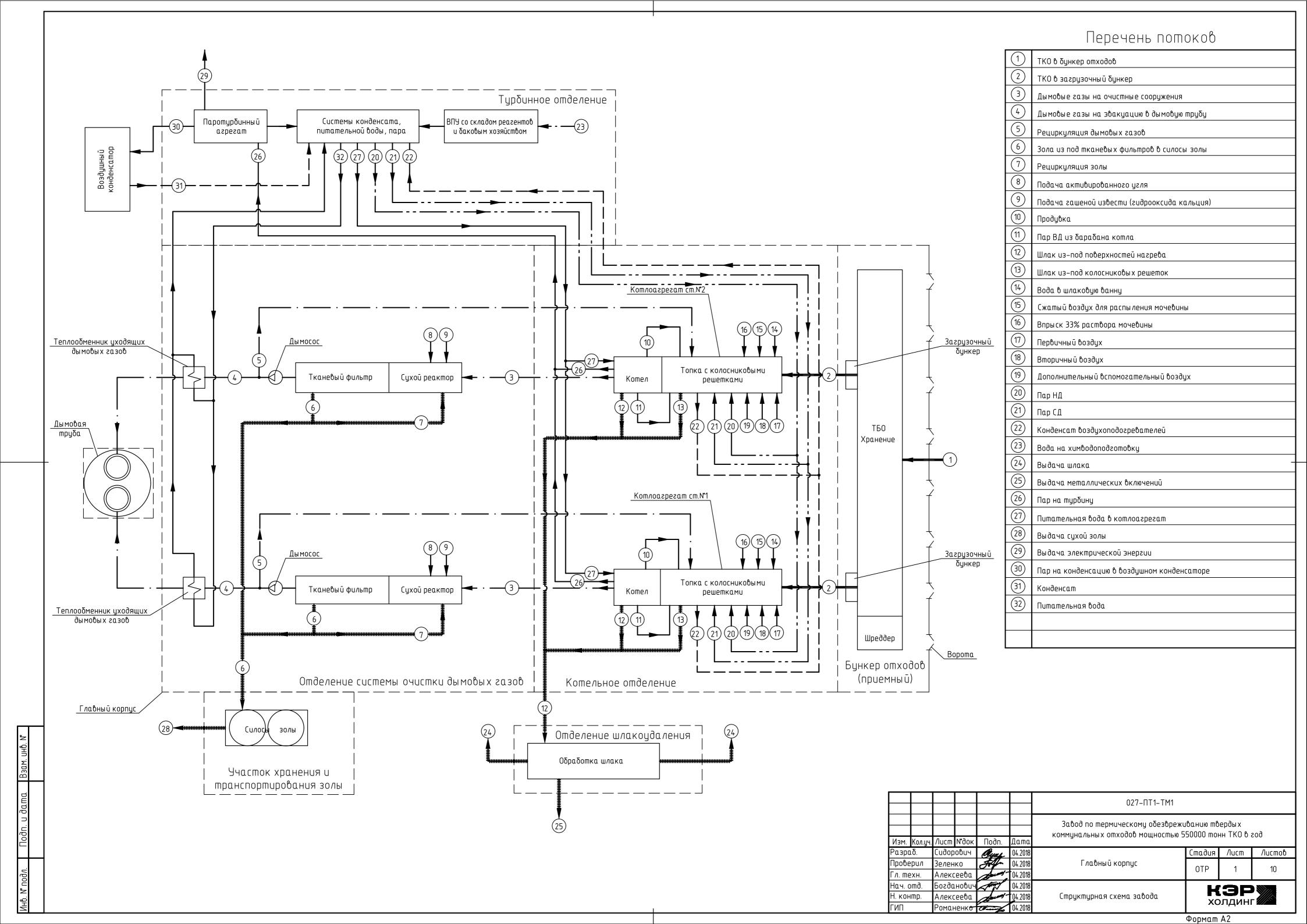
Исполнитель: Е.В Кузнецов конт. тел.533-93-14 Milly

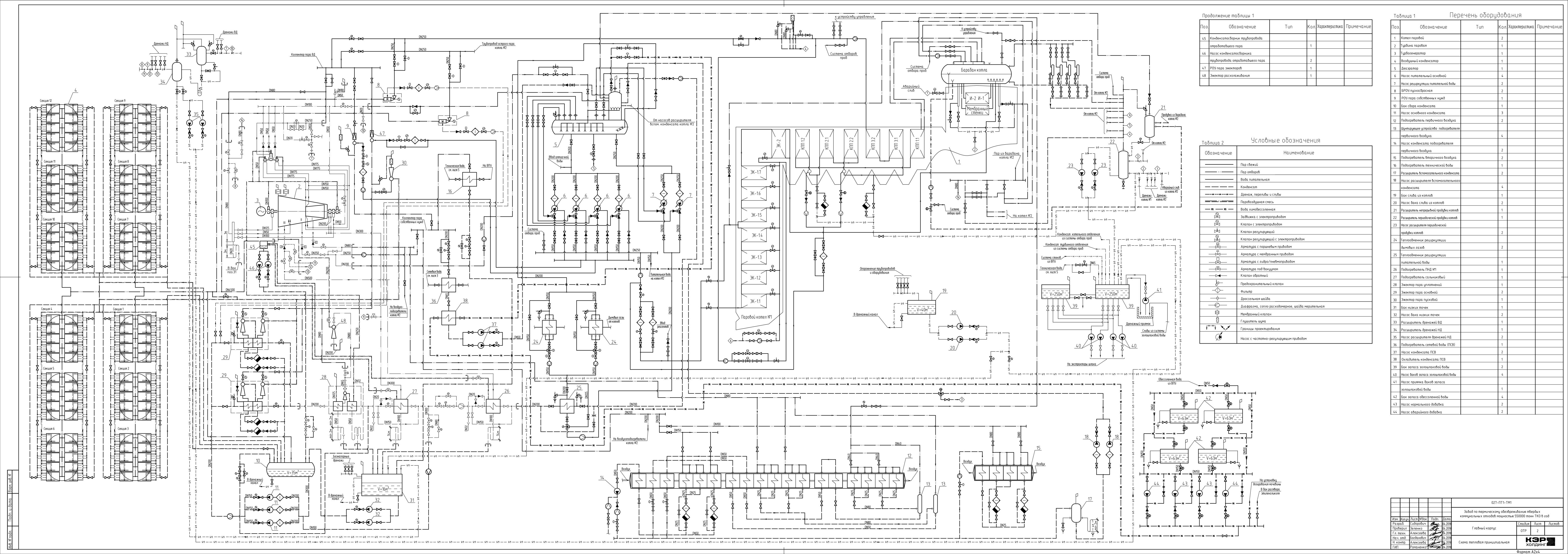

Р.А. Сафаров

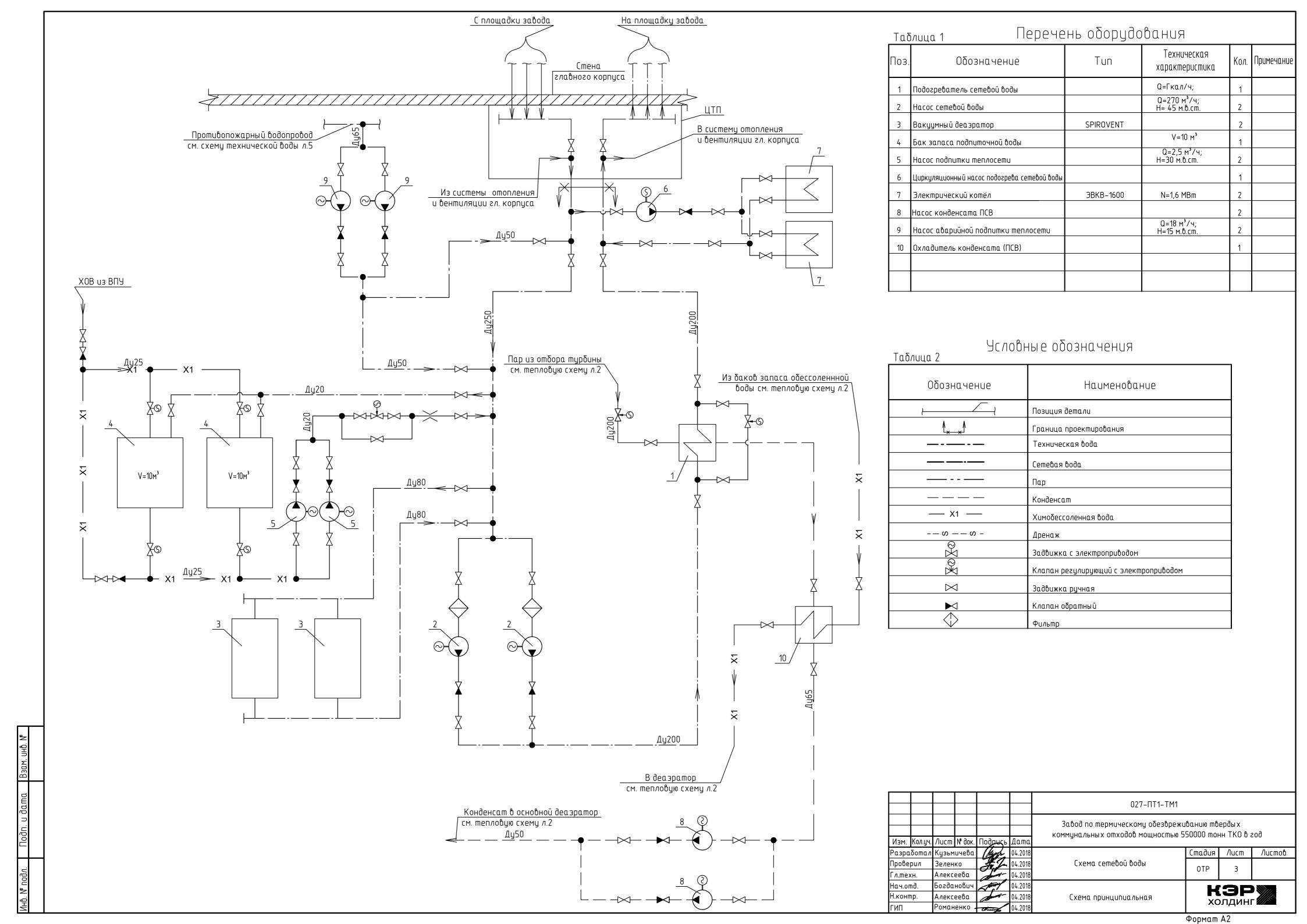
1.4 Графическая	часть	74
Обозначение	Наименование	Примечание
027-ПТ1-ГТ1 л.1	Ситуационный план М 1:20000. Фрагмент	
	ситуационного плана M 1:5000	
027-ПТ1-ГТ1 л.2	Схема планировочной организации земельного	
	участка М 1:1000	
027-ПТ1-ТМ1 л.1	Главный корпус. Структурная схема завода	
027-ПТ1-ТМ1 л.2	Главный корпус. Схема тепловая принципиальная	
027-ПТ1-ТМ1 л.3	Главный корпус. Схема сетевой воды	
027-ПТ1-ТМ1 л.4	Главный корпус. Схема замкнутого контура	
	охлаждения	
027-ПТ1-ТМ1 л.5	Главный корпус. Схема технической воды	
027-ПТ1-ТМ1 л.6	Главный корпус. Компоновочные чертежи. План на	
	отм. 0.000	
027-ПТ1-ТМ1 л.7	Главный корпус. Компоновочные чертежи. План на	
	отм. +9.000, +15.100; план электротехнических	
	помещений на отм.+3.300,+11.100; план АБП на отм.	
	+4.800, +8.400	
027-ПТ1-ТМ1 л.8	Главный корпус. Компоновочные чертежи. План	
	АБП на отм. +11.700, +15.300, +18.000	
027-ПТ1-ТМ1 л.9	Главный корпус. Компоновочные чертежи. План на	
	отм. +14.600,+23.000. Разрез А-А, В-В	
027-ПТ1-ТМ1 л.10	Главный корпус. Компоновочные чертежи. Разрез	
	Б-Б. Спецификация	
027-ΠT1-TK1	Система газоснабжения. Схема принципиальная	
027-ПТ1-ГР1 л.1	Баланс водопотребления и водоотведения	
027-ПТ1-ГР1 л.2	Система водоснабжения. Принципиальная схема.	
027-ΠT1-ЭM1	Схема электрическая главная	
027-ПТ1-ВП1	Схема принципиальная технологическая ВПУ	
Изм. Кол.уч Лист № док.	Док. № Арх. № 027-ПТ1-ПЗ Подп. Дата Файл:	Лист 72

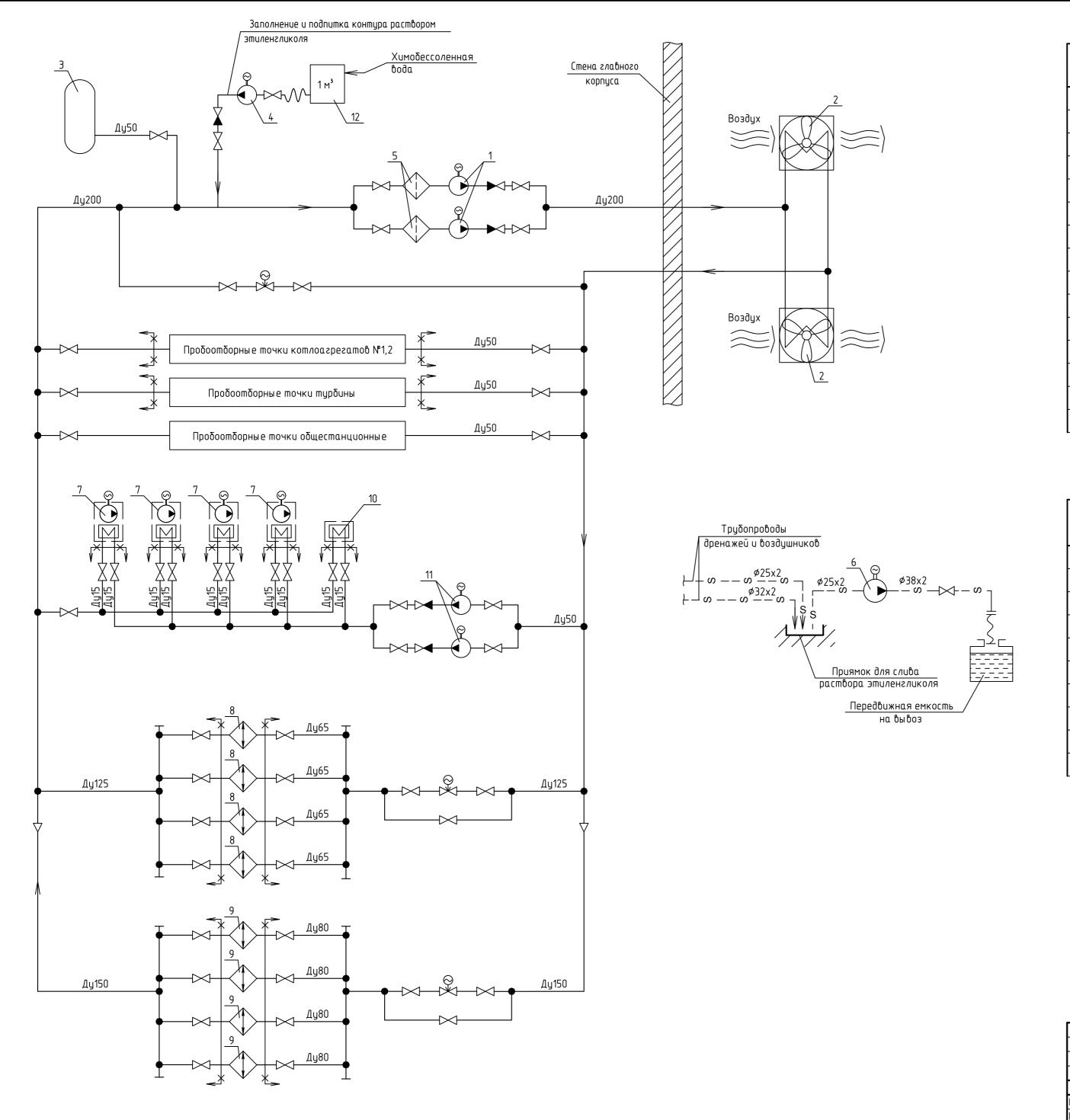
Номер на плане	Наименование	Координаты квадрата сетки
1	Главный корпус:	
1.1	Зона разгрузки отходов (отвальный пролет)	
1.2	Бункер отходов (приемный)	
1.3	Котельное отделение	
1.4	Отделение очистки дымовых газов	
1.5	Турбинное отделение	
1.6	Блок ОЩУ и административно-бытовых помещений	
1.7	Блок электротехнических помещений и ВПУ	
1.8	Отделение шлакоудаления	
1.9	Участок хранения и транспортировки золы	
1.10	Общезаводская компрессорная	
2	Дымовая труба	
3	Газорегуляторный пункт	
4	Воздушная конденсационная установка (ВКУ)	
5	Дизельгенераторы	
6	Открытая установка трансформаторов (пристанционный узел)	
7	Открытое распределительное устройство (ОРУ)	
8	Главная проходная	
9	Стоянка личного транспорта	
10	Грузовая проходная с весовой	
11	Стоянка грузовых контейнеров	
12	Насосная станция пожаротушения и хозяйственно-питьевого водоснабжения	
13	Резервуары питьевой воды, 2 шт.	
14	Резервуары противопожарного запаса воды, 2 шт.	
15	Насосная станция бытовых стоков	
16	Комплекс очистных сооружений производственно-дождевых стоков	
17	Бак аварийного слива турбинного масла	
18	Бак аварийного слива трансформаторного масла	
19	Очистные сооружения замасленных сточных вод	
20	Площадка для контейнеров	
21	Склад баллонов газа	
22	Площадка для заправки погрузчиков	
23	Установка обнаружения радиоактивного излучения	
24	Временная стоянка мусоровозов	
25	Ограждение	
26	Гостевая парковка	
27	Аппараты воздушного охлаждения	
28	Внутриплощадочные автодороги	

					027-ПТ1-ГТ1				
зм. Кол.уч	/Jucm N	√°док	По∕д∂п.	Дата	Завод по термическому обезврежи коммунальных отходов мощностью 5		•	203	
зработа/	п Касперович		05.18		Стадия	/lucm	Листов		
ч. отд.				0 5.18	Общеплощадочные материалы	OTP	2		
контр.						Схема планировочной организации земельного участка. М 1:500	КЭР холдинг		

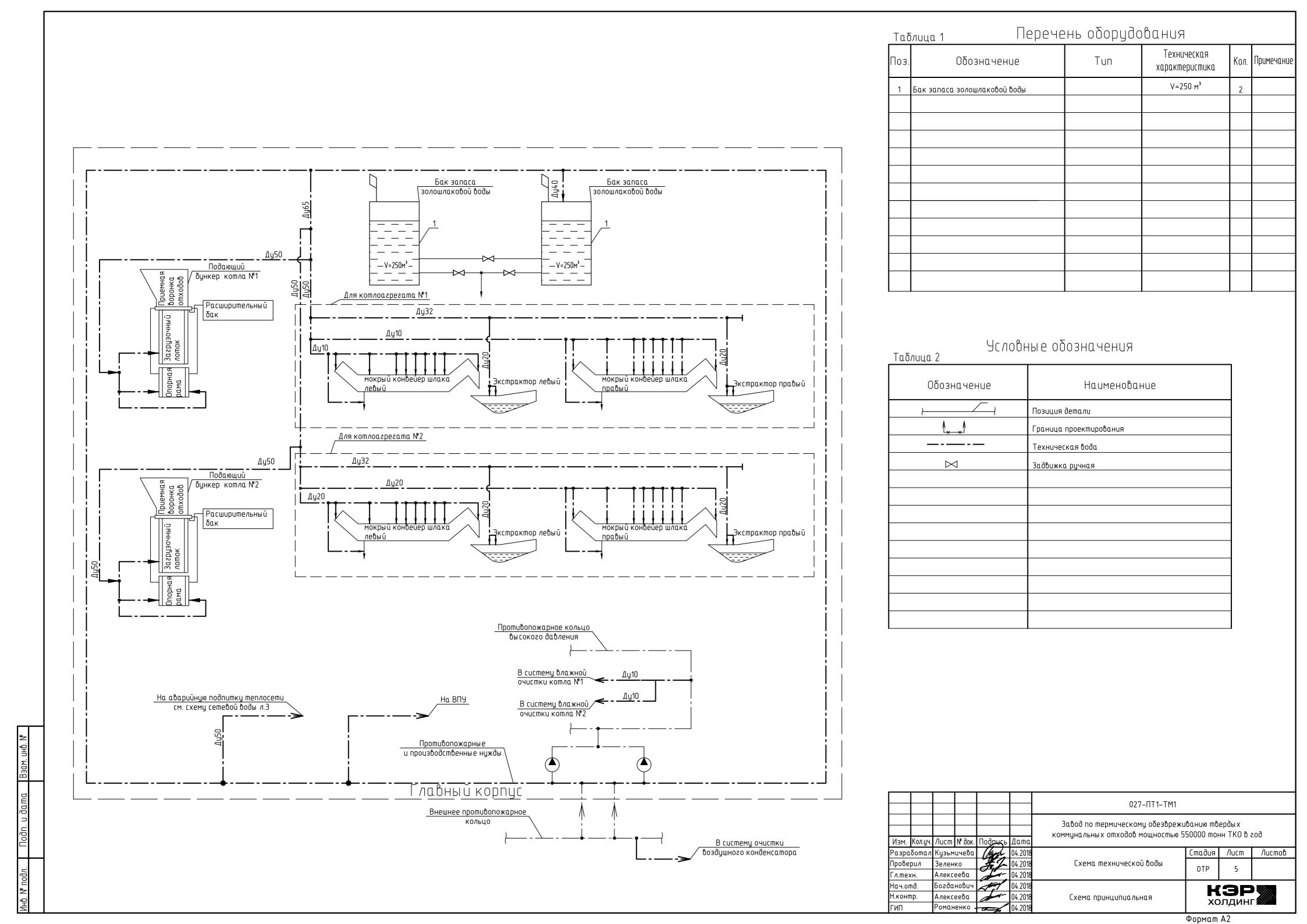

Экспликация зданий и сооружений

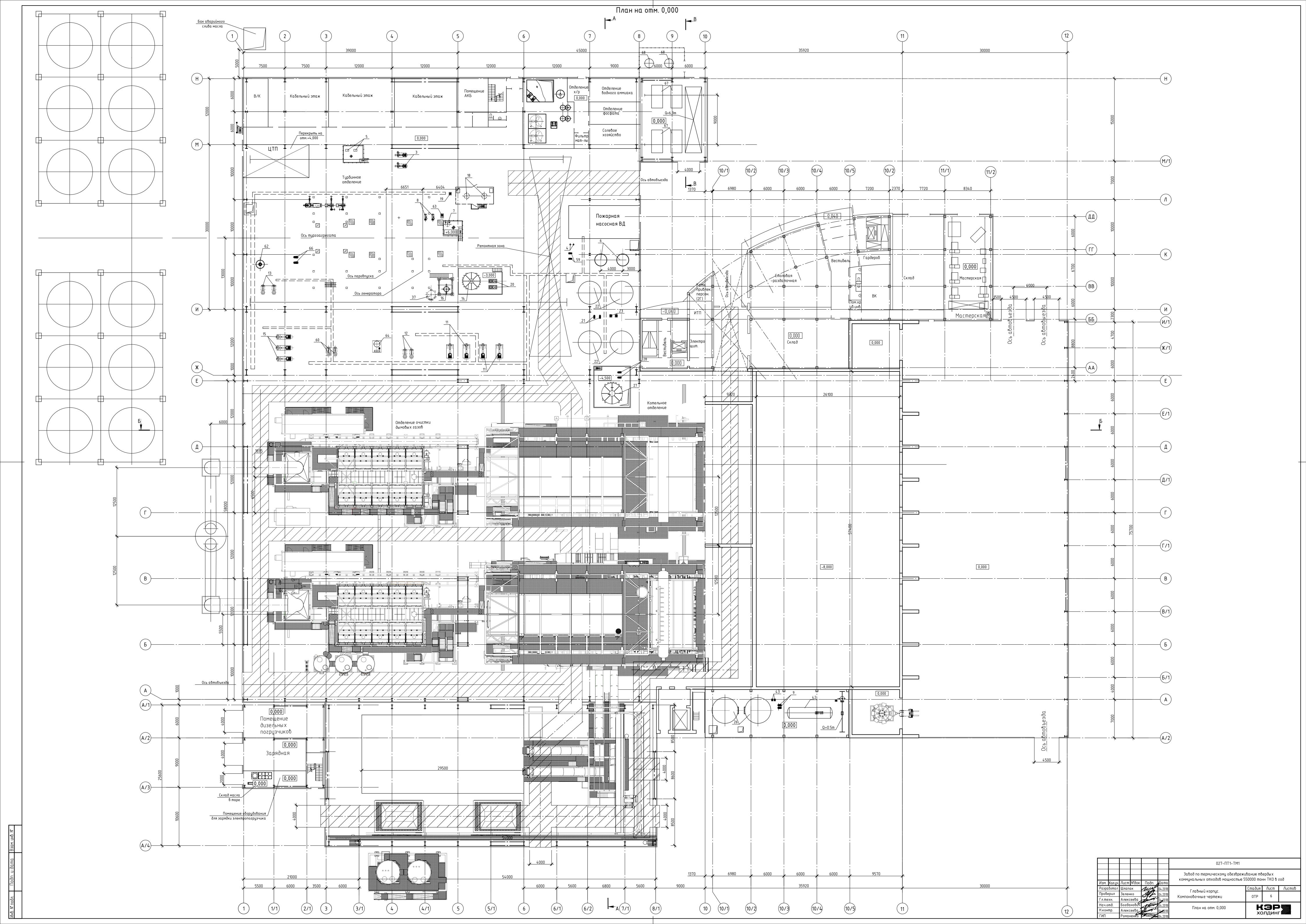

Номер на плане	Наименование	Координаты квадрата сетки
1	Главный корпус:	
1.1	Зона разгрузки отходов (отвальный пролет)	
1.2	Бункер отходов (приемный)	
1.3	Котельное отделение	
1.4	Отделение очистки дымовых газов	
1.5	Турбинное отделение	
1.6	Блок ОЩУ и административно-бытовых помещений	
1.7	Блок электротехнических помещений и ВПУ	
1.8	Отделение шлакоудаления	
1.9	Участок хранения и транспортировки золы	
1.10	Общезаводская компрессорная	
2	Дымовая труба	
3	Газорегуляторный пункт	
4	Воздушная конденсационная установка (ВКУ)	
5	Дизельгенераторы	
6	Открытая установка трансформаторов (пристанционный узел)	
7	Открытое распределительное устройство (ОРУ)	
8	Главная проходная	
9	Стоянка личного транспорта	
10	Грузовая проходная с весовой	
11	Стоянка грузовых контейнеров	
12	Насосная станция пожаротушения и хозяйственно-питьевого водоснабжения	
13	Резервуары питьевой воды, 2 шт.	
14	Резервуары противопожарного запаса воды, 2 шт.	
15	Насосная станция бытовых стоков	
16	Комплекс очистных сооружений производственно-дождевых стоков	
17	Бак аварийного слива турбинного масла	
18	Бак аварийного слива трансформаторного масла	
19	Очистные сооружения замасленных сточных вод	
20	Площадка для контейнеров	
21	Склад баллонов газа	
22	Эстакады технологических трубопроводов	
23	Установка обнаружения радиоактивного излучения	
24	Временная стоянка мусоровозов	
25	Ограждение	
26	Кабельная эстакада	
27	Аппараты воздушного охлаждения	
28	Внутриплощадочные автодороги	


Условные обозначения

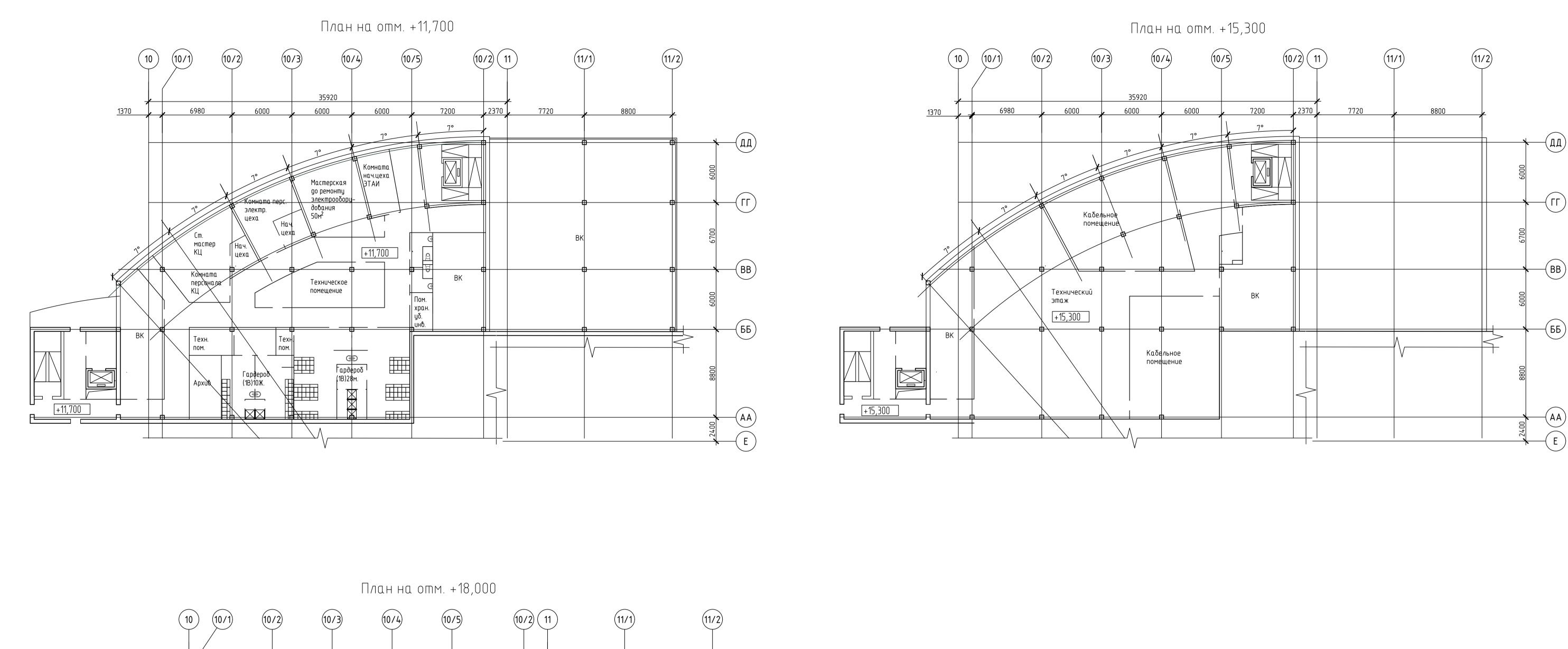

Обозначение	Наименование					
———— « ——— Схема движения транспорта для перевозки ТКО						
·	Схема движения транспорта для перевозки шлака					
	Схема движения транспорта для перевозки золы					
—··—·	Схема движения транспорта для перевозки металлолома					
	Схема движения транспорта для перевозки крупногабаритных					
	инертных материалов					

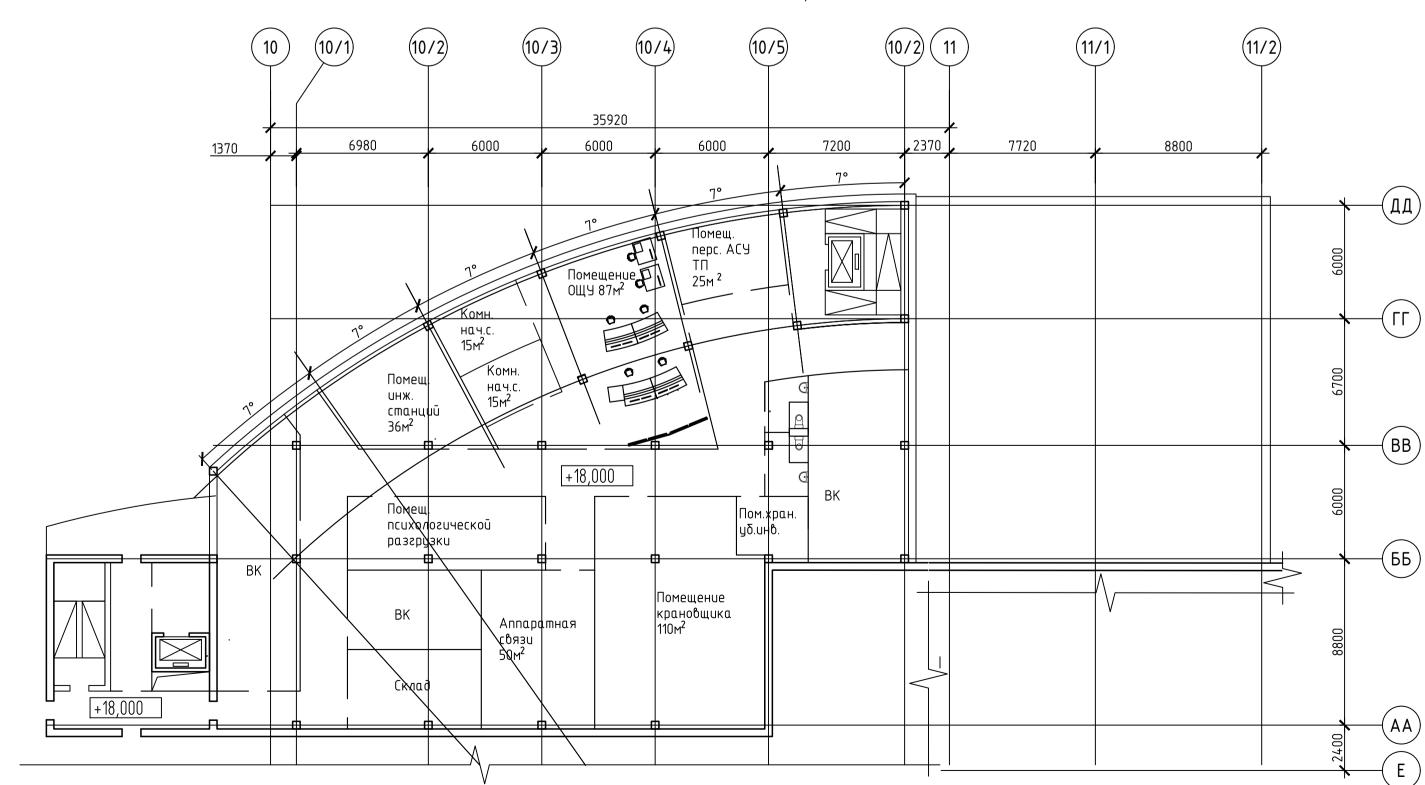
						027-ПТ1-ГТ1			
Изм.	Кол.уч.	/lucm	№док	По⁄д∂п.	Дата	Завод по термическому обезвреж коммунальных отходов мощностью			Sog
Разра	.ботал	ал Касперович 🦨		ADD.	04.18		Стадия	/lucm	Листов
Нач. отд.		Кривоносов		94.18		Общеплощадочные материалы	OTP	2	
Н контр.		Кривоносов		94.18 04.18	Схема планировочной организации земельного участка. М 1:1000	XC	КЗР		

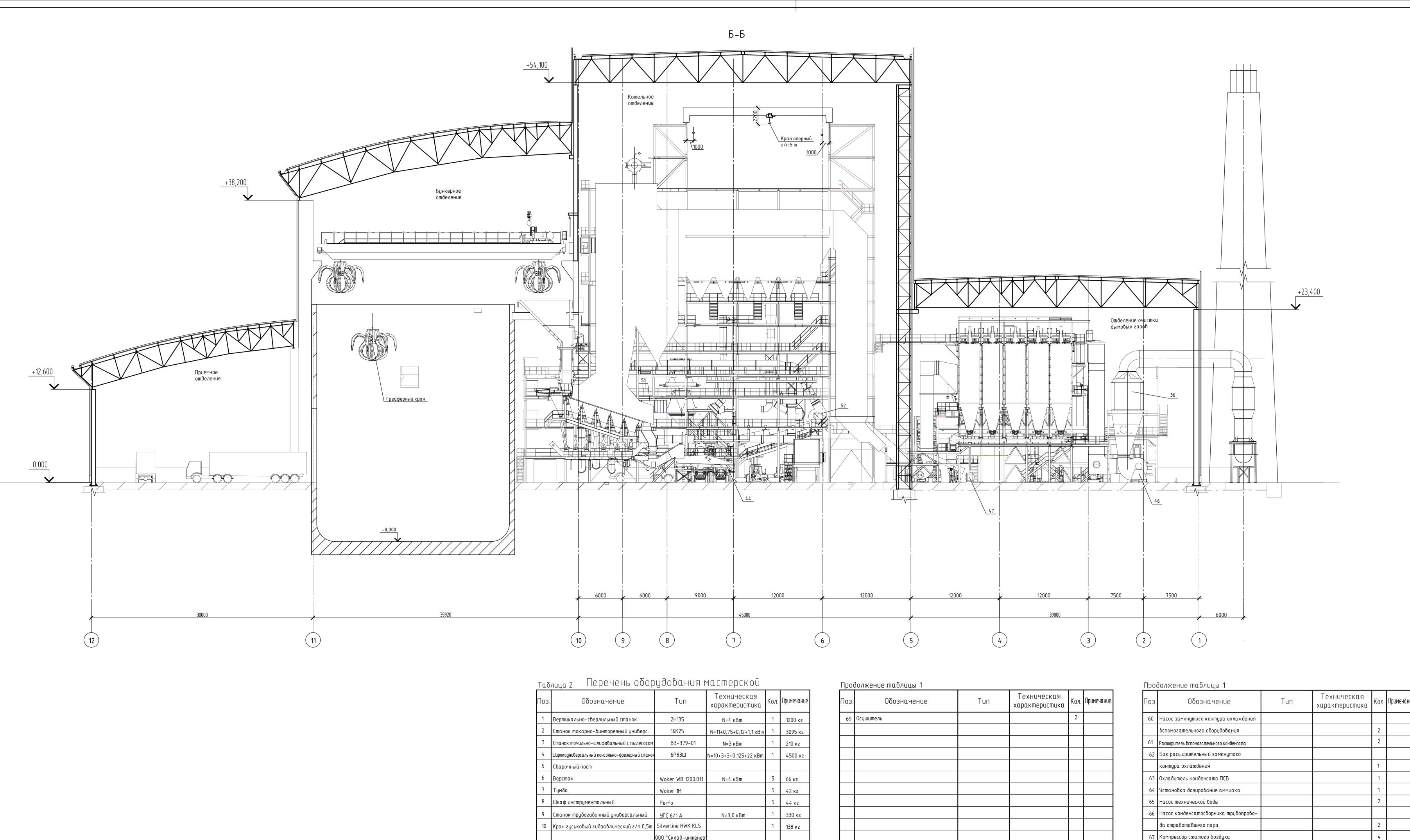

Перечень оборудования


Ταδλυμα 1							
Поз.	Обозначение	Tun	Кол.	Техническая характеристика	Приме- чание		
1	Ηατος 3ΚΟ		2	Q=340 м³/ч; H=50 м.в.ст.			
2	Воздушный теплообменник ЗКО		2				
3	Расширительный бак 3КО		1	V=2 M³			
4	Насос подачи раствора этиленгликоля		1				
5	Фильтр		2				
6	Насос дренажного приямка ЗКО		1	Q=1,8м³/ч; H=10,5 м.в.ст.			
7	Теплообменник охлаждения подшипников ПЭН		4	Qoxл.в.=1 м³/ч			
8	Маслоохладители паровой турбины		4	Qохл.в.=30 м³/ч			
9	Воздухоохладители генератора		4	Qохл.в.=50 м³/ч			
10	Маслоохладитель шредера		1	Qохл.в.=1 м³/ч			
11	Насос ЗКО вспомогательного оборудования		2				
12	Бак раствора этиленгликоля		1	V=1 m ³			

Условные обозначения Ταδλιμία 2


Ιαοπυμα Ζ	
Обозначение	Наименование
├	Позиция детали
(<u>*</u>	Граница проектирования
	Трубопровод технической воды
o o -	Дренаж
	Задвижка с электроприводом
	Клапан регулирующий с электроприводом
\bowtie	Задвижка ручная
\bowtie	Клапан обратный
\bigcirc	Фильтр


						027-ПТ1-ТМ1					
4			V 8 7		0	Завод по термическому обезвреживанию твердых коммунальных отходов мощностью 550000 тонн ТКО в год					
	Кол.уч.			////	Дата						
азра	ιδοπαν	Савиц	кая	(Holet)	04.2018		Стадия	∕lucm	Листов		
рове	рил	Зеленко Алексеева		Зеленко		Film.	04.2018	Схема замкнутого контура охлаждения	OTP	4	
л.me	XH.			-	04.2018		011	7			
ач.ог	mð.	Богданович		Богданович		Богданович 04.2018			L	20	
конг.	np.	Алексеева		лексеева 04.2		Схема принципиальная	КЭР холдинг				
ИΠ		Романенко -		Omen	04.2018			וחושאוני			
							φ.	10	•		



						027-ΠT1-TM1						
Изм. І	Кол.цч.	/lucm	№док	Подп.	Дата	Завод по термическому обезврежи коммунальных отходов мощностью 5		•	боз			
Разраδ	oma/ı	пал Шлапак		- //2	04.2018		Сшадия	/lucm	Листов			
Провер	оил Зеленко			E/174	04.2018	Главный корпус. Компоновочные чертежи	ОТР	8				
Гл.mexi	Н.	Алексеева		Duray-	04,2018	компоновочные чершежа	UTF					
Нач.от	Нач.отд.		Богданович		огданович обтобо 04.2018		04.2018		Vab			
Н.конт	Н.контр.		еева	Decared -	018	План АБП на отм. +11,700, +15,300, +18,000	YC	КЭР холдинг				
ГИП		Романенко		Berefo	04.2018		холдині 🛲					

000 "Склад-инженер

Перечень оборудования Техническая Tun Обозначение характеристика Турбина паровая с турбогенератором N=55 MBm Котел паровой Hacoc cemeboū Насос подпитки теплосети SPIROVENT Деаэратор вакуумный V=10 m3 6 Бак запаса подпиточной воды Подогреватель сетевой воды Насос конденсата ПСВ Насос δακοβ запаса золошлаковой воды Насос питательный основной Насос рециркуляции питательной воды Насос замкнутого контура охлаждения 14 Бак низких точек 5 Насос основного конденсата 16 Расширитель дренажей ВД Насос расширителя дренажей НД Электрический котел 9 Насос циркуляционный подогрева сетевой воды Насос бака низких точек Насос аварийного добавка Бак запаса обессоленной водь Насос нормального добавка 24 Бак сбора конденсата Теплообменник рециркуляции питательной водь 26 Бак запаса золошлаковой воды 27 Бак слива из котлов 28 Насос бака слива из котлов 29 Деаэратор 🛚 Подогреватель сальниковый Коллектор основного пара Коллектор пара собственных нужа Насос расширителя вспомогательного конденсата 34 Подача Na3P04 вентилятор бозоуха на горение 36 Теплообменник рециркуляции дымовых газов 7 Расширитель дренажей НД 38 | Силос активированного угля 39 Обработка активированного угля 40 Силос извести -1 Складирование сухой золы 2 Подготовка карбамида 3 Подача карбомида Удаление зольного остатка 45 |Расширитель вспомогательного конденсато 7 Химическая обработка дымовых газов 48 Вентилятор первичного воздуха 49 Вентилятор охлаждающего воздуха 50 Подача жидких сред Подогреватель первичного воздуха 2 Дымосос рециркуляции 53 🛮 Автомобильный пункт загрузки шлака 55 БРОУ пускосбросная котла №1 и №2 56 РОУ собственных нужд Теплообменник исходной воды 59 Насос аварийной подпитки т/сети

027-ΠT1-TM1 Завод по термическому обезвреживанию твердых коммунальных отходов мощностью 550000 тонн ТКО в год Стадия Лист Листов Главный корпус. Компоновочные чертежи **КЭР**холдинг Разрез Б-Б. Спецификация

68 Воздухосборник

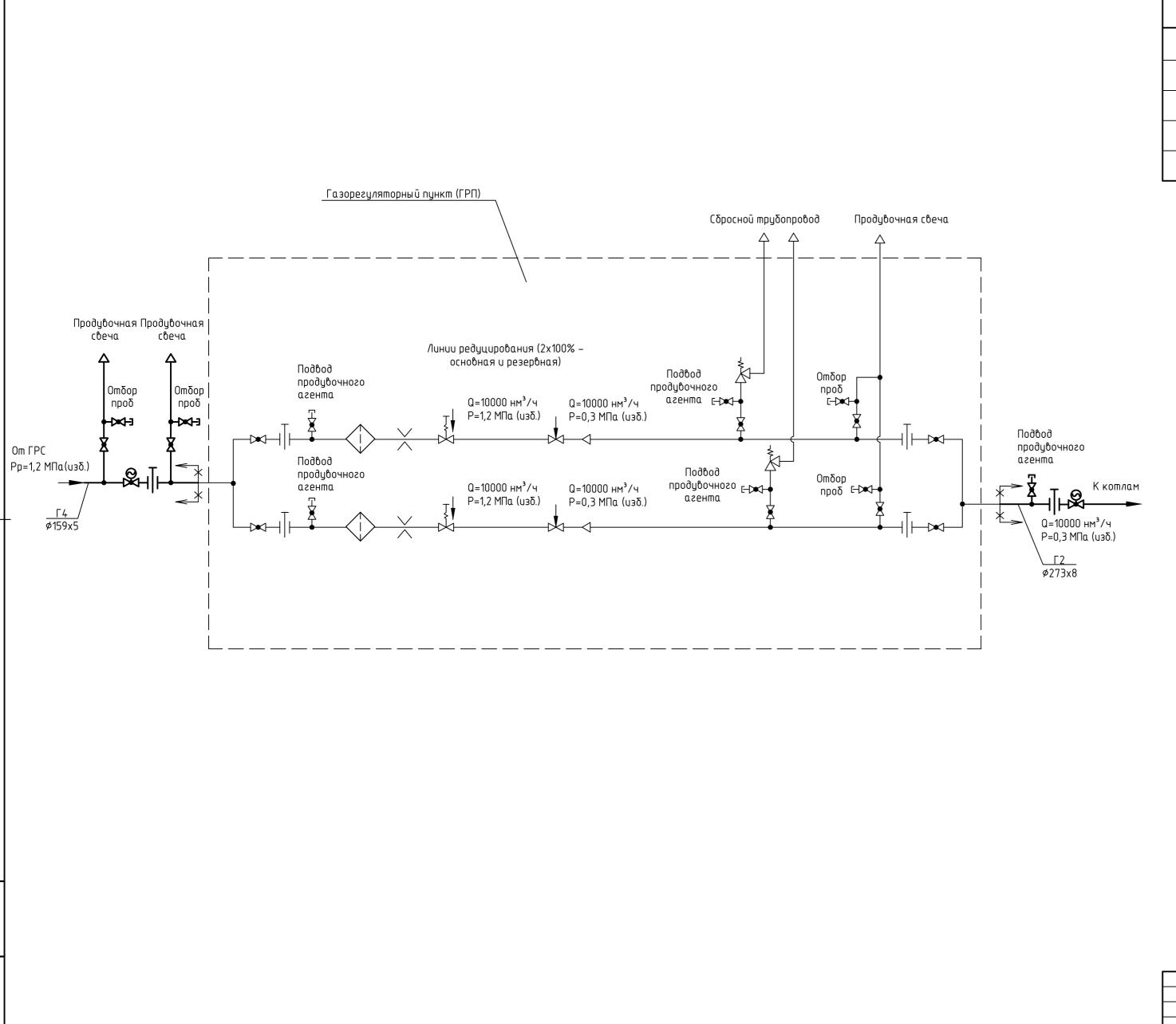
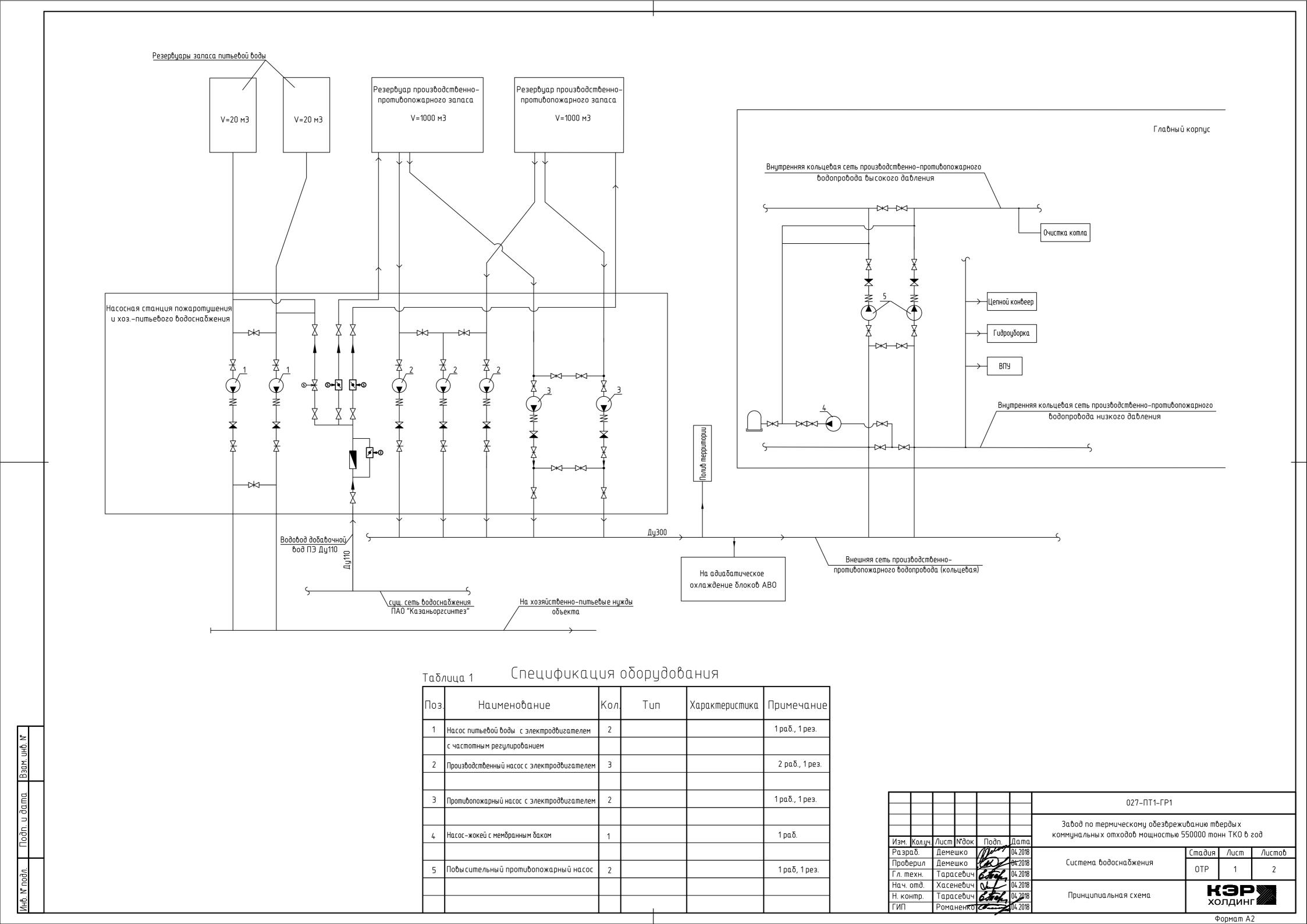
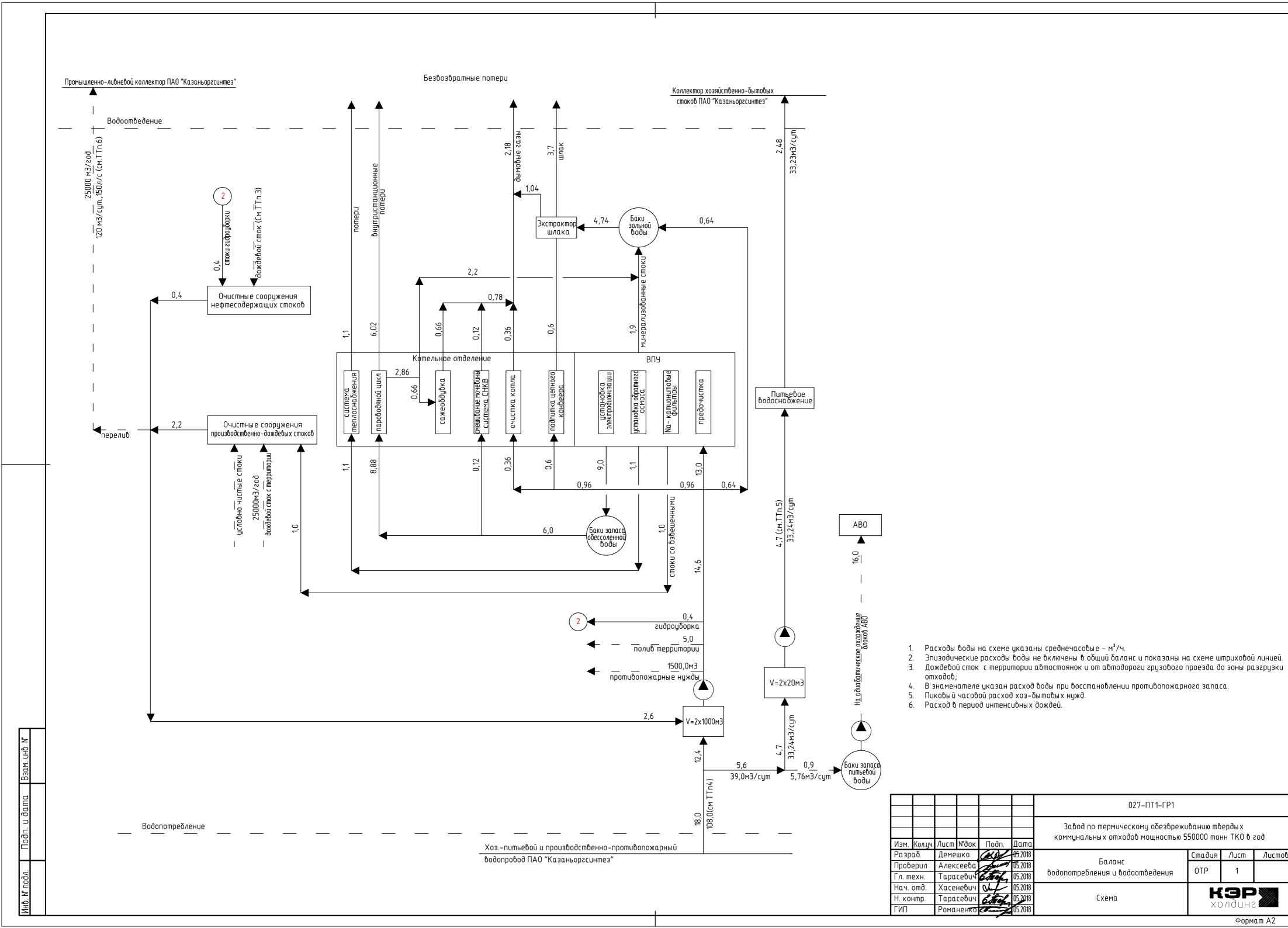
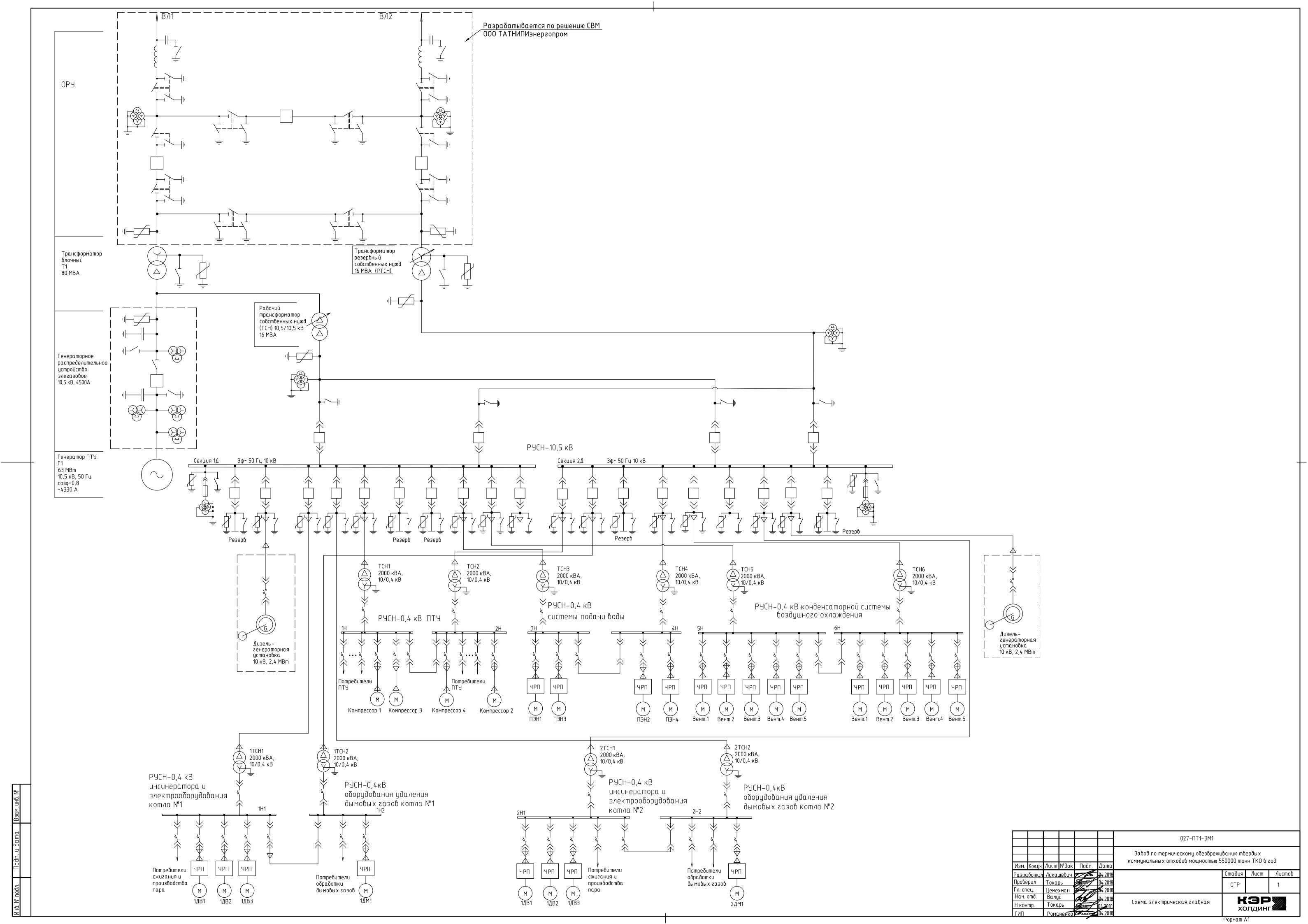




таблица 1 Условные обозначения

ι ασπαζα τ	
Обозначение	Наименование
* * *	Граница проектирования
-	Кольцо (заглушка)
	Расходомерное устройство
\uparrow	Оголовок продувочной свечи
	Шаровый кран с электроприводом

						027-NT1-TK1				
						Завод по термическому обезвреживанию твердых коммунальных отходов мощностью 550000 тонн ТКО в год			200	
1зм.	Кол.уч.	Nucm	№док	Подп.	Дата	-				
азработал		Μαῦοροβα		Res	04.2018		Сшадия	/lucm	Листов	
роверил		Песецкий		-52	04.2018	Система газоснабжения	ОТР		1	
						C	КЭР холдинг			
. контр.		Песецкий		-62	04.2018	Схема принципиальная ХОЛДИНГ			нг ///	
ИΠ		Романенко		Ome	04.2018			•		



Формат А2

Лист Листов

КЭР

Исходная сырая подогретая вода ΝαΟΗ В баки зольной воды Сжатый воздух 900 ЧЭДИ ФСД В баки обессоленной , На подпитку тепловой сети

Спецификация оборудования

Ταδлυцα 1

Поз.	Наименование	Кол.	Tun	Характеристика	Примечание
1	Фильтр грубой очистки			200 мкм	
2	Бак исходной воды	1		V=14,5 m³, Ø2310	
3	Насосная станция исходной воды	1		Q=19,0 м ³ /ч, H=30 м	
4	Фильтр обезжелезивания	1		Q=19,0 m/ч	
5	Фильтр натрий катионитный	2		Q=9,5 m/ч	
6	Бак химочищенной воды	1		V=14,5 m³, Ø2310	
7	Станция насосная подачи воды на установку обратного осмоса	1		Q=17,0 м ³ /ч, H=30 м	
8	Установка обратного осмоса (УОО)	2		Q=13,0 м ³ /ч	
9	Дегазатор	2		Q=13,0 m/y	
10	Бак пермеата 900	1		V=14,5 m³, Ø2310	
11	Станция насосная пермеата 900 на 9ЭДИ	1		Q=11,5 м ³ /ч, H=45 м	
12	Установка электродечонизации (УЭДИ)	2		Q=11,0 м ³ /ч	
13	Станция насосная пермеата УОО на подпитку тепловой сети	1		Q=1,1 m ³ ч, H=30 m	
14	Фильтр смешанного действия	2		Q=6,0 m ³ /ч	
15	Бак-усреднитель минерализованных стоков	1		V=40,0 m ³	подземный железобетонный
16	Насос минерализованных стоков	2		Q=5 м ³ ч, Н=45 м	

Расчетная производительность ВПУ: для подпитки цикла котлов — 11 3 /ч, для подпитки теплосети — 1,1 3 /ч.

						027-ПТ1- ВП1				
						Завод по термическому обезвреживанию твердых коммунальных отходов мощностью 550000 тонн ТКО в год				
Изм.	Кол.уч.	/lucm	№док	Подп.	Дата	Korii igria/ibiibi X oliixoooo i loqilocilibio 3				
ГИП		Рома	оманенко 💮 💮		04.2018	Главный корпус.	Стадия	/lucm	Листов	
Нач.отд.		Хасеневич 🔽		Vanfar	04.2018	Химводоподготовка	ОТР		1	
Гл. техн.		Γαūθι	υМ	Harfr	04.2018	, (a) 10000110000111001(d	OTF		'	
Инжпроект		Ионкина <i>Же</i>		HEGT	04.2018	Схема принципиальная технологическая	Kab			
					ВПУ	КЭР холдинг				
Н.контр.		Γαūθι	ЫШ	Harfr	04.2018	כווט	долдин и			